A. Gutiérrez, M. Bressan, J. F. Jimenez, Corinne Alonso
{"title":"遮阳光伏系统实时监控HIL仿真器的开发","authors":"A. Gutiérrez, M. Bressan, J. F. Jimenez, Corinne Alonso","doi":"10.1109/ICRERA.2017.8191110","DOIUrl":null,"url":null,"abstract":"This paper presents the development of a real-time Supervision Hardware-in-the-Loop (HIL) emulator of shaded PV systems. This study is focused on shaded conditions due to the impact of shadows in the final energy production and the global structural healthy. In this context, we propose a methodology to emulate in real-time the shaded PV system behavior. This proposed methodology is intended for evaluation of supervision and fault detection strategies using a Hardware-in-the-Loop approach. This study takes advantage of FPGAs given their features of adaptability and parallel processing suitable for emulation of complex shaded PV systems. The proposed methodology employs the High Level Specification of Embedded Systems (HiLeS) for automatic VHDL code generation, and the graphical Systems Modeling Language (SysML) to represent the PV system behavior. Experimental results show the emulation of current-voltage behavior of PV modules under normal and shaded conditions. Emulation results are compared with experimental and conventional computational approaches shown a high degree of accuracy.","PeriodicalId":6535,"journal":{"name":"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)","volume":"1 1","pages":"499-504"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Development of real-time supervision HIL emulator of shaded PV systems\",\"authors\":\"A. Gutiérrez, M. Bressan, J. F. Jimenez, Corinne Alonso\",\"doi\":\"10.1109/ICRERA.2017.8191110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the development of a real-time Supervision Hardware-in-the-Loop (HIL) emulator of shaded PV systems. This study is focused on shaded conditions due to the impact of shadows in the final energy production and the global structural healthy. In this context, we propose a methodology to emulate in real-time the shaded PV system behavior. This proposed methodology is intended for evaluation of supervision and fault detection strategies using a Hardware-in-the-Loop approach. This study takes advantage of FPGAs given their features of adaptability and parallel processing suitable for emulation of complex shaded PV systems. The proposed methodology employs the High Level Specification of Embedded Systems (HiLeS) for automatic VHDL code generation, and the graphical Systems Modeling Language (SysML) to represent the PV system behavior. Experimental results show the emulation of current-voltage behavior of PV modules under normal and shaded conditions. Emulation results are compared with experimental and conventional computational approaches shown a high degree of accuracy.\",\"PeriodicalId\":6535,\"journal\":{\"name\":\"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)\",\"volume\":\"1 1\",\"pages\":\"499-504\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRERA.2017.8191110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRERA.2017.8191110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of real-time supervision HIL emulator of shaded PV systems
This paper presents the development of a real-time Supervision Hardware-in-the-Loop (HIL) emulator of shaded PV systems. This study is focused on shaded conditions due to the impact of shadows in the final energy production and the global structural healthy. In this context, we propose a methodology to emulate in real-time the shaded PV system behavior. This proposed methodology is intended for evaluation of supervision and fault detection strategies using a Hardware-in-the-Loop approach. This study takes advantage of FPGAs given their features of adaptability and parallel processing suitable for emulation of complex shaded PV systems. The proposed methodology employs the High Level Specification of Embedded Systems (HiLeS) for automatic VHDL code generation, and the graphical Systems Modeling Language (SysML) to represent the PV system behavior. Experimental results show the emulation of current-voltage behavior of PV modules under normal and shaded conditions. Emulation results are compared with experimental and conventional computational approaches shown a high degree of accuracy.