基于多正态分布的时间序列离散生成模型

S. Gandhi, T. Oates, Arnold P. Boedihardjo, Crystal Chen, Jessica Lin, Pavel Senin, S. Frankenstein, Xing Wang
{"title":"基于多正态分布的时间序列离散生成模型","authors":"S. Gandhi, T. Oates, Arnold P. Boedihardjo, Crystal Chen, Jessica Lin, Pavel Senin, S. Frankenstein, Xing Wang","doi":"10.1145/2809890.2809892","DOIUrl":null,"url":null,"abstract":"Discretization is a crucial first step in several time series mining applications. Our research proposes a novel method to discretize time series data and develops a similarity score based on the discretized representation. The similarity score allows us to compare two time series sequences and enables us to perform pattern learning tasks such as clustering, classification, and anomaly detection. We propose a generative model for discretization based on multiple normal distributions and create an optimization technique to learn parameters of these normal distributions. To show the effectiveness of our approach, we perform comprehensive experiments in classifying datasets from the UCR time series repository.","PeriodicalId":67056,"journal":{"name":"车间管理","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Generative Model For Time Series Discretization Based On Multiple Normal Distributions\",\"authors\":\"S. Gandhi, T. Oates, Arnold P. Boedihardjo, Crystal Chen, Jessica Lin, Pavel Senin, S. Frankenstein, Xing Wang\",\"doi\":\"10.1145/2809890.2809892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discretization is a crucial first step in several time series mining applications. Our research proposes a novel method to discretize time series data and develops a similarity score based on the discretized representation. The similarity score allows us to compare two time series sequences and enables us to perform pattern learning tasks such as clustering, classification, and anomaly detection. We propose a generative model for discretization based on multiple normal distributions and create an optimization technique to learn parameters of these normal distributions. To show the effectiveness of our approach, we perform comprehensive experiments in classifying datasets from the UCR time series repository.\",\"PeriodicalId\":67056,\"journal\":{\"name\":\"车间管理\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"车间管理\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1145/2809890.2809892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"车间管理","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1145/2809890.2809892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

离散化是几个时间序列挖掘应用中至关重要的第一步。我们的研究提出了一种新的离散化时间序列数据的方法,并基于离散化表示建立了相似度评分。相似性分数允许我们比较两个时间序列序列,并使我们能够执行模式学习任务,如聚类、分类和异常检测。我们提出了一种基于多个正态分布的离散化生成模型,并创建了一种优化技术来学习这些正态分布的参数。为了证明我们方法的有效性,我们对UCR时间序列存储库中的数据集进行了全面的分类实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Generative Model For Time Series Discretization Based On Multiple Normal Distributions
Discretization is a crucial first step in several time series mining applications. Our research proposes a novel method to discretize time series data and develops a similarity score based on the discretized representation. The similarity score allows us to compare two time series sequences and enables us to perform pattern learning tasks such as clustering, classification, and anomaly detection. We propose a generative model for discretization based on multiple normal distributions and create an optimization technique to learn parameters of these normal distributions. To show the effectiveness of our approach, we perform comprehensive experiments in classifying datasets from the UCR time series repository.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
316
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信