乳房网:用有限乳房数据进行分类的熵正则化可转移多任务学习

Jialin Shi, Ji Wu, Ping Lv, Jiajia Guo
{"title":"乳房网:用有限乳房数据进行分类的熵正则化可转移多任务学习","authors":"Jialin Shi, Ji Wu, Ping Lv, Jiajia Guo","doi":"10.17706/IJBBB.2019.9.1.20-26","DOIUrl":null,"url":null,"abstract":"We describe a framework to automatically separate malignant from benign breast lesions using limited breast ultrasound data. The main uniqueness of this framework includes: (1) in terms of the unique shape features of breast lesions, two types of image patches are designed to fine-tune pre-trained models, aiming to characterize the overall appearance and heterogeneity in shapes of breast lesions. (2) taking the BI-RADS regression task as an auxiliary task, a multi-task architecture is proposed to improve the accuracy of classification. (3) instead of prevalent cross-entropy loss, we introduce training with confusion by means of regularizing prediction entropy to prevent overfitting. Extensive experimental results on small-scale breast ultrasound dataset corroborate that the proposed framework is superior to the state-of-the-art approaches in breast lesions classification with limited data. Besides, we provide detailed analysis of the choice of regularizing parameter and visual evidence that introduction of confusion leads to increase in feature generalization.","PeriodicalId":13816,"journal":{"name":"International Journal of Bioscience, Biochemistry and Bioinformatics","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"BreastNet: Entropy-Regularized Transferable Multi-task Learning for Classification with Limited Breast Data\",\"authors\":\"Jialin Shi, Ji Wu, Ping Lv, Jiajia Guo\",\"doi\":\"10.17706/IJBBB.2019.9.1.20-26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a framework to automatically separate malignant from benign breast lesions using limited breast ultrasound data. The main uniqueness of this framework includes: (1) in terms of the unique shape features of breast lesions, two types of image patches are designed to fine-tune pre-trained models, aiming to characterize the overall appearance and heterogeneity in shapes of breast lesions. (2) taking the BI-RADS regression task as an auxiliary task, a multi-task architecture is proposed to improve the accuracy of classification. (3) instead of prevalent cross-entropy loss, we introduce training with confusion by means of regularizing prediction entropy to prevent overfitting. Extensive experimental results on small-scale breast ultrasound dataset corroborate that the proposed framework is superior to the state-of-the-art approaches in breast lesions classification with limited data. Besides, we provide detailed analysis of the choice of regularizing parameter and visual evidence that introduction of confusion leads to increase in feature generalization.\",\"PeriodicalId\":13816,\"journal\":{\"name\":\"International Journal of Bioscience, Biochemistry and Bioinformatics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bioscience, Biochemistry and Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17706/IJBBB.2019.9.1.20-26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioscience, Biochemistry and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17706/IJBBB.2019.9.1.20-26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们描述了一个框架,自动区分恶性和良性乳腺病变使用有限的乳房超声数据。该框架的主要独特性包括:(1)针对乳腺病变独特的形状特征,设计了两种类型的图像补丁来微调预训练模型,旨在表征乳腺病变的整体外观和形状的异质性。(2)以BI-RADS回归任务为辅助任务,提出多任务架构,提高分类准确率。(3)代替普遍存在的交叉熵损失,采用正则化预测熵的方法引入带混淆的训练,防止过拟合。在小规模乳腺超声数据集上的大量实验结果证实,该框架在数据有限的情况下优于最先进的乳腺病变分类方法。此外,我们对正则化参数的选择进行了详细的分析,并给出了引入混淆导致特征泛化提高的视觉证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BreastNet: Entropy-Regularized Transferable Multi-task Learning for Classification with Limited Breast Data
We describe a framework to automatically separate malignant from benign breast lesions using limited breast ultrasound data. The main uniqueness of this framework includes: (1) in terms of the unique shape features of breast lesions, two types of image patches are designed to fine-tune pre-trained models, aiming to characterize the overall appearance and heterogeneity in shapes of breast lesions. (2) taking the BI-RADS regression task as an auxiliary task, a multi-task architecture is proposed to improve the accuracy of classification. (3) instead of prevalent cross-entropy loss, we introduce training with confusion by means of regularizing prediction entropy to prevent overfitting. Extensive experimental results on small-scale breast ultrasound dataset corroborate that the proposed framework is superior to the state-of-the-art approaches in breast lesions classification with limited data. Besides, we provide detailed analysis of the choice of regularizing parameter and visual evidence that introduction of confusion leads to increase in feature generalization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信