Junlan Zhou, Malveeka Tewari, Min Zhu, A. Kabbani, L. Poutievski, Arjun Singh, Amin Vahdat
{"title":"WCMP:用于提高数据中心公平性的加权成本多路径","authors":"Junlan Zhou, Malveeka Tewari, Min Zhu, A. Kabbani, L. Poutievski, Arjun Singh, Amin Vahdat","doi":"10.1145/2592798.2592803","DOIUrl":null,"url":null,"abstract":"Data Center topologies employ multiple paths among servers to deliver scalable, cost-effective network capacity. The simplest and the most widely deployed approach for load balancing among these paths, Equal Cost Multipath (ECMP), hashes flows among the shortest paths toward a destination. ECMP leverages uniform hashing of balanced flow sizes to achieve fairness and good load balancing in data centers. However, we show that ECMP further assumes a balanced, regular, and fault-free topology, which are invalid assumptions in practice that can lead to substantial performance degradation and, worse, variation in flow bandwidths even for same size flows.\n We present a set of simple algorithms that achieve Weighted Cost Multipath (WCMP) to balance traffic in the data center based on the changing network topology. The state required for WCMP is already disseminated as part of standard routing protocols and it can be readily implemented in the current switch silicon without any hardware modifications. We show how to deploy WCMP in a production OpenFlow network environment and present experimental and simulation results to show that variation in flow bandwidths can be reduced by as much as 25X by employing WCMP relative to ECMP.","PeriodicalId":20737,"journal":{"name":"Proceedings of the Eleventh European Conference on Computer Systems","volume":"84 1","pages":"5:1-5:14"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"170","resultStr":"{\"title\":\"WCMP: weighted cost multipathing for improved fairness in data centers\",\"authors\":\"Junlan Zhou, Malveeka Tewari, Min Zhu, A. Kabbani, L. Poutievski, Arjun Singh, Amin Vahdat\",\"doi\":\"10.1145/2592798.2592803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data Center topologies employ multiple paths among servers to deliver scalable, cost-effective network capacity. The simplest and the most widely deployed approach for load balancing among these paths, Equal Cost Multipath (ECMP), hashes flows among the shortest paths toward a destination. ECMP leverages uniform hashing of balanced flow sizes to achieve fairness and good load balancing in data centers. However, we show that ECMP further assumes a balanced, regular, and fault-free topology, which are invalid assumptions in practice that can lead to substantial performance degradation and, worse, variation in flow bandwidths even for same size flows.\\n We present a set of simple algorithms that achieve Weighted Cost Multipath (WCMP) to balance traffic in the data center based on the changing network topology. The state required for WCMP is already disseminated as part of standard routing protocols and it can be readily implemented in the current switch silicon without any hardware modifications. We show how to deploy WCMP in a production OpenFlow network environment and present experimental and simulation results to show that variation in flow bandwidths can be reduced by as much as 25X by employing WCMP relative to ECMP.\",\"PeriodicalId\":20737,\"journal\":{\"name\":\"Proceedings of the Eleventh European Conference on Computer Systems\",\"volume\":\"84 1\",\"pages\":\"5:1-5:14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"170\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eleventh European Conference on Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2592798.2592803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh European Conference on Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2592798.2592803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
WCMP: weighted cost multipathing for improved fairness in data centers
Data Center topologies employ multiple paths among servers to deliver scalable, cost-effective network capacity. The simplest and the most widely deployed approach for load balancing among these paths, Equal Cost Multipath (ECMP), hashes flows among the shortest paths toward a destination. ECMP leverages uniform hashing of balanced flow sizes to achieve fairness and good load balancing in data centers. However, we show that ECMP further assumes a balanced, regular, and fault-free topology, which are invalid assumptions in practice that can lead to substantial performance degradation and, worse, variation in flow bandwidths even for same size flows.
We present a set of simple algorithms that achieve Weighted Cost Multipath (WCMP) to balance traffic in the data center based on the changing network topology. The state required for WCMP is already disseminated as part of standard routing protocols and it can be readily implemented in the current switch silicon without any hardware modifications. We show how to deploy WCMP in a production OpenFlow network environment and present experimental and simulation results to show that variation in flow bandwidths can be reduced by as much as 25X by employing WCMP relative to ECMP.