俄罗斯小麦对棒状Stagonospora nodorum的新抗性来源及效应-敏感基因互作的作用

Q4 Agricultural and Biological Sciences
T. Nuzhnaya, S. Veselova, G. Burkhanova, S. Rumyantsev, O. Shoeva, Mikhail Shein, I. Maksimov
{"title":"俄罗斯小麦对棒状Stagonospora nodorum的新抗性来源及效应-敏感基因互作的作用","authors":"T. Nuzhnaya, S. Veselova, G. Burkhanova, S. Rumyantsev, O. Shoeva, Mikhail Shein, I. Maksimov","doi":"10.3390/ijpb14020031","DOIUrl":null,"url":null,"abstract":"Virulence factors of the pathogen Stagonospora nodorum Berk. are numerous necrotrophic effectors (NEs) (SnTox), which interact with the products of host susceptibility genes (Snn), causing the development of the disease. In this study, 55 accessions of bread spring and winter wheat were screened for sensitivity to NEs SnToxA, SnTox1, and SnTox3 using different isolates of S. nodorum. In the studied panel of wheat, 47 accessions were modern commercial cultivars grown in Russia and 8 cultivars were historic wheat accessions from the N. I. Vavilov Institute of Plant Genetic Resources in Russia. In general, our wheat panel differed from other wheat collections with available data in that it was less sensitive to SnToxA and SnTox3, and more sensitive to SnTox1. Six sources of strong SNB resistance were identified in our wheat panel. In addition, during the study, wheat cultivars were identified as appropriate objects in which to study the different effects of SnTox-Snn interactions, which is important for marker-assisted selection for SNB resistance. The current study has shown, for the first time, that the expression level of Snn1 and Tsn1 susceptibility genes and the disease severity of the different wheat cultivars are interconnected. Future work should focus on the deep characterization of SnTox-Snn interactions at the molecular level.","PeriodicalId":38827,"journal":{"name":"International Journal of Plant Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Sources of Resistance to Stagonospora nodorum and Role of Effector-Susceptibility Gene Interactions in Wheat of Russian Breeding\",\"authors\":\"T. Nuzhnaya, S. Veselova, G. Burkhanova, S. Rumyantsev, O. Shoeva, Mikhail Shein, I. Maksimov\",\"doi\":\"10.3390/ijpb14020031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Virulence factors of the pathogen Stagonospora nodorum Berk. are numerous necrotrophic effectors (NEs) (SnTox), which interact with the products of host susceptibility genes (Snn), causing the development of the disease. In this study, 55 accessions of bread spring and winter wheat were screened for sensitivity to NEs SnToxA, SnTox1, and SnTox3 using different isolates of S. nodorum. In the studied panel of wheat, 47 accessions were modern commercial cultivars grown in Russia and 8 cultivars were historic wheat accessions from the N. I. Vavilov Institute of Plant Genetic Resources in Russia. In general, our wheat panel differed from other wheat collections with available data in that it was less sensitive to SnToxA and SnTox3, and more sensitive to SnTox1. Six sources of strong SNB resistance were identified in our wheat panel. In addition, during the study, wheat cultivars were identified as appropriate objects in which to study the different effects of SnTox-Snn interactions, which is important for marker-assisted selection for SNB resistance. The current study has shown, for the first time, that the expression level of Snn1 and Tsn1 susceptibility genes and the disease severity of the different wheat cultivars are interconnected. Future work should focus on the deep characterization of SnTox-Snn interactions at the molecular level.\",\"PeriodicalId\":38827,\"journal\":{\"name\":\"International Journal of Plant Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Plant Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ijpb14020031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ijpb14020031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

病原菌结核Stagonospora nodorum Berk的毒力因素。有许多坏死性效应物(SnTox),它们与宿主易感基因(Snn)的产物相互作用,导致疾病的发展。本研究对55份面包春小麦和冬小麦进行了SnToxA、SnTox1和SnTox3的敏感性筛选。在小麦研究组中,47个品种是俄罗斯种植的现代商品小麦品种,8个品种是俄罗斯瓦维洛夫植物遗传资源研究所的历史小麦品种。总的来说,我们的小麦样本与其他小麦样本的不同之处是,它对SnToxA和SnTox3的敏感性较低,而对SnTox1的敏感性较高。在我们的小麦组中发现了6个强耐SNB源。此外,在研究过程中,确定了小麦品种作为研究snx - snn相互作用不同效应的合适对象,这对SNB抗性的标记辅助选择具有重要意义。本研究首次表明,Snn1和Tsn1易感基因的表达水平与不同小麦品种的病害严重程度存在相互关联。未来的工作应该集中在snx - snn相互作用在分子水平上的深入表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Sources of Resistance to Stagonospora nodorum and Role of Effector-Susceptibility Gene Interactions in Wheat of Russian Breeding
Virulence factors of the pathogen Stagonospora nodorum Berk. are numerous necrotrophic effectors (NEs) (SnTox), which interact with the products of host susceptibility genes (Snn), causing the development of the disease. In this study, 55 accessions of bread spring and winter wheat were screened for sensitivity to NEs SnToxA, SnTox1, and SnTox3 using different isolates of S. nodorum. In the studied panel of wheat, 47 accessions were modern commercial cultivars grown in Russia and 8 cultivars were historic wheat accessions from the N. I. Vavilov Institute of Plant Genetic Resources in Russia. In general, our wheat panel differed from other wheat collections with available data in that it was less sensitive to SnToxA and SnTox3, and more sensitive to SnTox1. Six sources of strong SNB resistance were identified in our wheat panel. In addition, during the study, wheat cultivars were identified as appropriate objects in which to study the different effects of SnTox-Snn interactions, which is important for marker-assisted selection for SNB resistance. The current study has shown, for the first time, that the expression level of Snn1 and Tsn1 susceptibility genes and the disease severity of the different wheat cultivars are interconnected. Future work should focus on the deep characterization of SnTox-Snn interactions at the molecular level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Plant Biology
International Journal of Plant Biology Agricultural and Biological Sciences-Plant Science
CiteScore
2.00
自引率
0.00%
发文量
44
审稿时长
10 weeks
期刊介绍: The International Journal of Plant Biology is an Open Access, online-only, peer-reviewed journal that considers scientific papers in all different subdisciplines of plant biology, such as physiology, molecular biology, cell biology, development, genetics, systematics, ecology, evolution, ecophysiology, plant-microbe interactions, mycology and phytopathology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信