利用智能手机感知消防队伍的群体接近动态

S. Feese, B. Arnrich, G. Tröster, M. Burtscher, Bertolt Meyer, K. Jonas
{"title":"利用智能手机感知消防队伍的群体接近动态","authors":"S. Feese, B. Arnrich, G. Tröster, M. Burtscher, Bertolt Meyer, K. Jonas","doi":"10.1145/2493988.2494332","DOIUrl":null,"url":null,"abstract":"Firefighters work in dangerous and unfamiliar situations under a high degree of time pressure and thus team work is of utmost importance. Relying on trained automatisms, firefighters coordinate their actions implicitly by observing the actions of their team members. To support training instructors with objective mission data, we aim to automatically detect when a firefighter is in-sight with other firefighters and to visualize the proximity dynamics of firefighting missions. In our approach, we equip firefighters with smartphones and use the built-in ANT protocol, a low-power communication radio, to measure proximity to other firefighters. In a second step, we cluster the proximity data to detect moving sub-groups. To evaluate our method, we recorded proximity data of 16 professional firefighting teams performing a real-life training scenario. We manually labeled six training sessions, involving 51 firefighters, to obtain 79 minutes of ground truth data. On average, our algorithm assigns each group member to the correct ground truth cluster with 80% accuracy. Considering height information derived from atmospheric pressure signals increases group assignment accuracy to 95%.","PeriodicalId":90988,"journal":{"name":"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference","volume":"7 1","pages":"97-104"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Sensing group proximity dynamics of firefighting teams using smartphones\",\"authors\":\"S. Feese, B. Arnrich, G. Tröster, M. Burtscher, Bertolt Meyer, K. Jonas\",\"doi\":\"10.1145/2493988.2494332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Firefighters work in dangerous and unfamiliar situations under a high degree of time pressure and thus team work is of utmost importance. Relying on trained automatisms, firefighters coordinate their actions implicitly by observing the actions of their team members. To support training instructors with objective mission data, we aim to automatically detect when a firefighter is in-sight with other firefighters and to visualize the proximity dynamics of firefighting missions. In our approach, we equip firefighters with smartphones and use the built-in ANT protocol, a low-power communication radio, to measure proximity to other firefighters. In a second step, we cluster the proximity data to detect moving sub-groups. To evaluate our method, we recorded proximity data of 16 professional firefighting teams performing a real-life training scenario. We manually labeled six training sessions, involving 51 firefighters, to obtain 79 minutes of ground truth data. On average, our algorithm assigns each group member to the correct ground truth cluster with 80% accuracy. Considering height information derived from atmospheric pressure signals increases group assignment accuracy to 95%.\",\"PeriodicalId\":90988,\"journal\":{\"name\":\"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference\",\"volume\":\"7 1\",\"pages\":\"97-104\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2493988.2494332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2493988.2494332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

消防员在危险和陌生的情况下工作,时间压力很大,因此团队合作是至关重要的。依靠训练有素的自动性,消防员通过观察团队成员的行动来暗中协调他们的行动。为了用客观的任务数据支持训练教员,我们的目标是自动检测消防员何时与其他消防员在视线内,并可视化消防任务的接近动态。在我们的方法中,我们为消防员配备智能手机,并使用内置的ANT协议(一种低功耗通信无线电)来测量与其他消防员的距离。在第二步中,我们将接近数据聚类以检测移动的子组。为了评估我们的方法,我们记录了16个专业消防队进行真实训练场景的接近数据。我们手动标记了六个训练课程,涉及51名消防员,以获得79分钟的地面真实数据。平均而言,我们的算法以80%的准确率将每个组成员分配到正确的ground truth聚类。考虑从大气压力信号中获得的高度信息,将分组分配精度提高到95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensing group proximity dynamics of firefighting teams using smartphones
Firefighters work in dangerous and unfamiliar situations under a high degree of time pressure and thus team work is of utmost importance. Relying on trained automatisms, firefighters coordinate their actions implicitly by observing the actions of their team members. To support training instructors with objective mission data, we aim to automatically detect when a firefighter is in-sight with other firefighters and to visualize the proximity dynamics of firefighting missions. In our approach, we equip firefighters with smartphones and use the built-in ANT protocol, a low-power communication radio, to measure proximity to other firefighters. In a second step, we cluster the proximity data to detect moving sub-groups. To evaluate our method, we recorded proximity data of 16 professional firefighting teams performing a real-life training scenario. We manually labeled six training sessions, involving 51 firefighters, to obtain 79 minutes of ground truth data. On average, our algorithm assigns each group member to the correct ground truth cluster with 80% accuracy. Considering height information derived from atmospheric pressure signals increases group assignment accuracy to 95%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信