S. Feese, B. Arnrich, G. Tröster, M. Burtscher, Bertolt Meyer, K. Jonas
{"title":"利用智能手机感知消防队伍的群体接近动态","authors":"S. Feese, B. Arnrich, G. Tröster, M. Burtscher, Bertolt Meyer, K. Jonas","doi":"10.1145/2493988.2494332","DOIUrl":null,"url":null,"abstract":"Firefighters work in dangerous and unfamiliar situations under a high degree of time pressure and thus team work is of utmost importance. Relying on trained automatisms, firefighters coordinate their actions implicitly by observing the actions of their team members. To support training instructors with objective mission data, we aim to automatically detect when a firefighter is in-sight with other firefighters and to visualize the proximity dynamics of firefighting missions. In our approach, we equip firefighters with smartphones and use the built-in ANT protocol, a low-power communication radio, to measure proximity to other firefighters. In a second step, we cluster the proximity data to detect moving sub-groups. To evaluate our method, we recorded proximity data of 16 professional firefighting teams performing a real-life training scenario. We manually labeled six training sessions, involving 51 firefighters, to obtain 79 minutes of ground truth data. On average, our algorithm assigns each group member to the correct ground truth cluster with 80% accuracy. Considering height information derived from atmospheric pressure signals increases group assignment accuracy to 95%.","PeriodicalId":90988,"journal":{"name":"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference","volume":"7 1","pages":"97-104"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Sensing group proximity dynamics of firefighting teams using smartphones\",\"authors\":\"S. Feese, B. Arnrich, G. Tröster, M. Burtscher, Bertolt Meyer, K. Jonas\",\"doi\":\"10.1145/2493988.2494332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Firefighters work in dangerous and unfamiliar situations under a high degree of time pressure and thus team work is of utmost importance. Relying on trained automatisms, firefighters coordinate their actions implicitly by observing the actions of their team members. To support training instructors with objective mission data, we aim to automatically detect when a firefighter is in-sight with other firefighters and to visualize the proximity dynamics of firefighting missions. In our approach, we equip firefighters with smartphones and use the built-in ANT protocol, a low-power communication radio, to measure proximity to other firefighters. In a second step, we cluster the proximity data to detect moving sub-groups. To evaluate our method, we recorded proximity data of 16 professional firefighting teams performing a real-life training scenario. We manually labeled six training sessions, involving 51 firefighters, to obtain 79 minutes of ground truth data. On average, our algorithm assigns each group member to the correct ground truth cluster with 80% accuracy. Considering height information derived from atmospheric pressure signals increases group assignment accuracy to 95%.\",\"PeriodicalId\":90988,\"journal\":{\"name\":\"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference\",\"volume\":\"7 1\",\"pages\":\"97-104\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2493988.2494332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2493988.2494332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sensing group proximity dynamics of firefighting teams using smartphones
Firefighters work in dangerous and unfamiliar situations under a high degree of time pressure and thus team work is of utmost importance. Relying on trained automatisms, firefighters coordinate their actions implicitly by observing the actions of their team members. To support training instructors with objective mission data, we aim to automatically detect when a firefighter is in-sight with other firefighters and to visualize the proximity dynamics of firefighting missions. In our approach, we equip firefighters with smartphones and use the built-in ANT protocol, a low-power communication radio, to measure proximity to other firefighters. In a second step, we cluster the proximity data to detect moving sub-groups. To evaluate our method, we recorded proximity data of 16 professional firefighting teams performing a real-life training scenario. We manually labeled six training sessions, involving 51 firefighters, to obtain 79 minutes of ground truth data. On average, our algorithm assigns each group member to the correct ground truth cluster with 80% accuracy. Considering height information derived from atmospheric pressure signals increases group assignment accuracy to 95%.