分数阶积分-微分包含的可积解的存在性耦合系统法

A. El-Sayed, S. Al-Issa
{"title":"分数阶积分-微分包含的可积解的存在性耦合系统法","authors":"A. El-Sayed, S. Al-Issa","doi":"10.22436/jnsa.013.04.02","DOIUrl":null,"url":null,"abstract":"In this article, we establish the existence of solutions for a functional integral equation of fractional order. The study upholds the case when the set-valued function has L1-Carathèodory selections, we reformulate the functional integral inclusion according to these selections via a classical fixed point theorem of Schauder and present theorem for the existence of integrable solutions. As an application, the existence of solutions of nonlinear functional integro-differential inclusion with an initial value, and the initial value problem for the arbitrary-order differential inclusion will be studied.","PeriodicalId":22770,"journal":{"name":"The Journal of Nonlinear Sciences and Applications","volume":"80 1","pages":"180-186"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Existence of integrable solutions for integro-differential inclusions of fractional order; coupled system approach\",\"authors\":\"A. El-Sayed, S. Al-Issa\",\"doi\":\"10.22436/jnsa.013.04.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we establish the existence of solutions for a functional integral equation of fractional order. The study upholds the case when the set-valued function has L1-Carathèodory selections, we reformulate the functional integral inclusion according to these selections via a classical fixed point theorem of Schauder and present theorem for the existence of integrable solutions. As an application, the existence of solutions of nonlinear functional integro-differential inclusion with an initial value, and the initial value problem for the arbitrary-order differential inclusion will be studied.\",\"PeriodicalId\":22770,\"journal\":{\"name\":\"The Journal of Nonlinear Sciences and Applications\",\"volume\":\"80 1\",\"pages\":\"180-186\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Nonlinear Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22436/jnsa.013.04.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Nonlinear Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22436/jnsa.013.04.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文建立了一类分数阶泛函积分方程解的存在性。研究了集值函数有l1 - carathorodory选择的情况,利用Schauder的经典不动点定理和可积解的存在性定理,根据这些选择重新表述了函数积分包含。作为应用,研究了具有初值的非线性泛函积分-微分包含的解的存在性,以及任意阶微分包含的初值问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of integrable solutions for integro-differential inclusions of fractional order; coupled system approach
In this article, we establish the existence of solutions for a functional integral equation of fractional order. The study upholds the case when the set-valued function has L1-Carathèodory selections, we reformulate the functional integral inclusion according to these selections via a classical fixed point theorem of Schauder and present theorem for the existence of integrable solutions. As an application, the existence of solutions of nonlinear functional integro-differential inclusion with an initial value, and the initial value problem for the arbitrary-order differential inclusion will be studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信