{"title":"用傅里叶级数的部分和的特定变换逼近连续函数的程度","authors":"X. Krasniqi","doi":"10.12697/acutm.2021.25.01","DOIUrl":null,"url":null,"abstract":"Using the Mean Rest Bounded Variation Sequences or the Mean Head Bounded Variation Sequences, we have proved four theorems pertaining to the degree of approximation in sup-norm of a continuous function f by general means τλn;A(f) of partial sums of its Fourier series. The degree of approximation is expressed via an auxiliary function H(t) ≥ 0 and via entries of a matrix whose indices form a strictly increasing sequence of positive integers λ := {λ(n)}∞n=1.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"15 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the degree of approximation of continuous functions by a specific transform of partial sums of their Fourier series\",\"authors\":\"X. Krasniqi\",\"doi\":\"10.12697/acutm.2021.25.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the Mean Rest Bounded Variation Sequences or the Mean Head Bounded Variation Sequences, we have proved four theorems pertaining to the degree of approximation in sup-norm of a continuous function f by general means τλn;A(f) of partial sums of its Fourier series. The degree of approximation is expressed via an auxiliary function H(t) ≥ 0 and via entries of a matrix whose indices form a strictly increasing sequence of positive integers λ := {λ(n)}∞n=1.\",\"PeriodicalId\":42426,\"journal\":{\"name\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12697/acutm.2021.25.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/acutm.2021.25.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
摘要
利用中差有界变差序列或中头有界变差序列,我们证明了关于连续函数f在其傅里叶级数的部分和的一般均值τλn; a (f)在其上模的逼近程度的四个定理。逼近的程度通过一个辅助函数H(t)≥0和一个矩阵的条目来表示,该矩阵的索引形成一个严格递增的正整数序列λ:= {λ(n)}∞n=1。
On the degree of approximation of continuous functions by a specific transform of partial sums of their Fourier series
Using the Mean Rest Bounded Variation Sequences or the Mean Head Bounded Variation Sequences, we have proved four theorems pertaining to the degree of approximation in sup-norm of a continuous function f by general means τλn;A(f) of partial sums of its Fourier series. The degree of approximation is expressed via an auxiliary function H(t) ≥ 0 and via entries of a matrix whose indices form a strictly increasing sequence of positive integers λ := {λ(n)}∞n=1.