{"title":"基于参数调度的贝叶斯迭代法预测最小功率空调热指标最优状态","authors":"Y. Saika, M. Nakagawa","doi":"10.18178/ijoee.6.1.32-36","DOIUrl":null,"url":null,"abstract":"On the basis of the Bayesian iterative method via parameter scheduling, we investigate the prediction of a set of optimal environmental variables of small-scale space by using air conditioning with minimized power. Numerical calculations clarify dynamic properties of the environmental variables, such as temperature and relative humidity at each sampling point in the present method for several realistic cases in severe summer season. We find the optimal parameter scheduling realizing the optimal environment with minimized power of the air conditioning both using air cooling and dehumidifier. ","PeriodicalId":13951,"journal":{"name":"International Journal of Electrical Energy","volume":"30 1","pages":"32-36"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Bayesian Iterative Method Using Parameter Scheduling for Predicting Optimal Condition on Thermal Index Due to Air Conditioning with Minimized Power\",\"authors\":\"Y. Saika, M. Nakagawa\",\"doi\":\"10.18178/ijoee.6.1.32-36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On the basis of the Bayesian iterative method via parameter scheduling, we investigate the prediction of a set of optimal environmental variables of small-scale space by using air conditioning with minimized power. Numerical calculations clarify dynamic properties of the environmental variables, such as temperature and relative humidity at each sampling point in the present method for several realistic cases in severe summer season. We find the optimal parameter scheduling realizing the optimal environment with minimized power of the air conditioning both using air cooling and dehumidifier. \",\"PeriodicalId\":13951,\"journal\":{\"name\":\"International Journal of Electrical Energy\",\"volume\":\"30 1\",\"pages\":\"32-36\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18178/ijoee.6.1.32-36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/ijoee.6.1.32-36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bayesian Iterative Method Using Parameter Scheduling for Predicting Optimal Condition on Thermal Index Due to Air Conditioning with Minimized Power
On the basis of the Bayesian iterative method via parameter scheduling, we investigate the prediction of a set of optimal environmental variables of small-scale space by using air conditioning with minimized power. Numerical calculations clarify dynamic properties of the environmental variables, such as temperature and relative humidity at each sampling point in the present method for several realistic cases in severe summer season. We find the optimal parameter scheduling realizing the optimal environment with minimized power of the air conditioning both using air cooling and dehumidifier.