{"title":"多项式环的上环的单调扩展上的单模行","authors":"M. A. Mathew, M. Keshari","doi":"10.1216/jca.2022.14.583","DOIUrl":null,"url":null,"abstract":"Let $R$ be a commutative Noetherian ring of dimension $d$ and $M$ a commutative cancellative torsion-free seminormal monoid. Then (1) Let $A$ be a ring of type $R[d,m,n]$ and $P$ be a projective $A[M]$-module of rank $r \\geq max\\{2,d+1\\}$. Then the action of $E(A[M] \\oplus P)$ on $Um(A[M] \\oplus P)$ is transitive and (2) Assume $(R, m, K)$ is a regular local ring containing a field $k$ such that either $char$ $k=0$ or $ char$ $k = p$ and $tr$-$deg$ $K/\\mathbb{F}_p \\geq 1$. Let $A$ be a ring of type $R[d,m,n]^*$ and $f\\in R$ be a regular parameter. Then all finitely generated projective modules over $A[M],$ $A[M]_f$ and $A[M] \\otimes_R R(T)$ are free. When $M$ is free both results are due to Keshari and Lokhande.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unimodular rows over monoid extensions of overrings of polynomial rings\",\"authors\":\"M. A. Mathew, M. Keshari\",\"doi\":\"10.1216/jca.2022.14.583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R$ be a commutative Noetherian ring of dimension $d$ and $M$ a commutative cancellative torsion-free seminormal monoid. Then (1) Let $A$ be a ring of type $R[d,m,n]$ and $P$ be a projective $A[M]$-module of rank $r \\\\geq max\\\\{2,d+1\\\\}$. Then the action of $E(A[M] \\\\oplus P)$ on $Um(A[M] \\\\oplus P)$ is transitive and (2) Assume $(R, m, K)$ is a regular local ring containing a field $k$ such that either $char$ $k=0$ or $ char$ $k = p$ and $tr$-$deg$ $K/\\\\mathbb{F}_p \\\\geq 1$. Let $A$ be a ring of type $R[d,m,n]^*$ and $f\\\\in R$ be a regular parameter. Then all finitely generated projective modules over $A[M],$ $A[M]_f$ and $A[M] \\\\otimes_R R(T)$ are free. When $M$ is free both results are due to Keshari and Lokhande.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1216/jca.2022.14.583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jca.2022.14.583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unimodular rows over monoid extensions of overrings of polynomial rings
Let $R$ be a commutative Noetherian ring of dimension $d$ and $M$ a commutative cancellative torsion-free seminormal monoid. Then (1) Let $A$ be a ring of type $R[d,m,n]$ and $P$ be a projective $A[M]$-module of rank $r \geq max\{2,d+1\}$. Then the action of $E(A[M] \oplus P)$ on $Um(A[M] \oplus P)$ is transitive and (2) Assume $(R, m, K)$ is a regular local ring containing a field $k$ such that either $char$ $k=0$ or $ char$ $k = p$ and $tr$-$deg$ $K/\mathbb{F}_p \geq 1$. Let $A$ be a ring of type $R[d,m,n]^*$ and $f\in R$ be a regular parameter. Then all finitely generated projective modules over $A[M],$ $A[M]_f$ and $A[M] \otimes_R R(T)$ are free. When $M$ is free both results are due to Keshari and Lokhande.