多项式环的上环的单调扩展上的单模行

Pub Date : 2021-04-19 DOI:10.1216/jca.2022.14.583
M. A. Mathew, M. Keshari
{"title":"多项式环的上环的单调扩展上的单模行","authors":"M. A. Mathew, M. Keshari","doi":"10.1216/jca.2022.14.583","DOIUrl":null,"url":null,"abstract":"Let $R$ be a commutative Noetherian ring of dimension $d$ and $M$ a commutative cancellative torsion-free seminormal monoid. Then (1) Let $A$ be a ring of type $R[d,m,n]$ and $P$ be a projective $A[M]$-module of rank $r \\geq max\\{2,d+1\\}$. Then the action of $E(A[M] \\oplus P)$ on $Um(A[M] \\oplus P)$ is transitive and (2) Assume $(R, m, K)$ is a regular local ring containing a field $k$ such that either $char$ $k=0$ or $ char$ $k = p$ and $tr$-$deg$ $K/\\mathbb{F}_p \\geq 1$. Let $A$ be a ring of type $R[d,m,n]^*$ and $f\\in R$ be a regular parameter. Then all finitely generated projective modules over $A[M],$ $A[M]_f$ and $A[M] \\otimes_R R(T)$ are free. When $M$ is free both results are due to Keshari and Lokhande.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unimodular rows over monoid extensions of overrings of polynomial rings\",\"authors\":\"M. A. Mathew, M. Keshari\",\"doi\":\"10.1216/jca.2022.14.583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R$ be a commutative Noetherian ring of dimension $d$ and $M$ a commutative cancellative torsion-free seminormal monoid. Then (1) Let $A$ be a ring of type $R[d,m,n]$ and $P$ be a projective $A[M]$-module of rank $r \\\\geq max\\\\{2,d+1\\\\}$. Then the action of $E(A[M] \\\\oplus P)$ on $Um(A[M] \\\\oplus P)$ is transitive and (2) Assume $(R, m, K)$ is a regular local ring containing a field $k$ such that either $char$ $k=0$ or $ char$ $k = p$ and $tr$-$deg$ $K/\\\\mathbb{F}_p \\\\geq 1$. Let $A$ be a ring of type $R[d,m,n]^*$ and $f\\\\in R$ be a regular parameter. Then all finitely generated projective modules over $A[M],$ $A[M]_f$ and $A[M] \\\\otimes_R R(T)$ are free. When $M$ is free both results are due to Keshari and Lokhande.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1216/jca.2022.14.583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jca.2022.14.583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设$R$是一个维数为$d$的可交换诺瑟环,$M$是一个可交换的无扭半正规单群。则(1)设$A$为类型为$R[d,m,n]$的环,$P$为秩为$r \geq max\{2,d+1\}$的投影$A[M]$ -模。那么$E(A[M] \oplus P)$对$Um(A[M] \oplus P)$的作用是可传递的,并且(2)假设$(R, m, K)$是一个正则局部环,包含一个字段$k$,使得$char$$k=0$或$ char$$k = p$和$tr$ - $deg$$K/\mathbb{F}_p \geq 1$。设$A$为类型为$R[d,m,n]^*$的环,$f\in R$为常规参数。那么所有在$A[M],$$A[M]_f$和$A[M] \otimes_R R(T)$上有限生成的投影模块都是免费的。当$M$免费时,两个结果都归功于Keshari和Lokhande。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Unimodular rows over monoid extensions of overrings of polynomial rings
Let $R$ be a commutative Noetherian ring of dimension $d$ and $M$ a commutative cancellative torsion-free seminormal monoid. Then (1) Let $A$ be a ring of type $R[d,m,n]$ and $P$ be a projective $A[M]$-module of rank $r \geq max\{2,d+1\}$. Then the action of $E(A[M] \oplus P)$ on $Um(A[M] \oplus P)$ is transitive and (2) Assume $(R, m, K)$ is a regular local ring containing a field $k$ such that either $char$ $k=0$ or $ char$ $k = p$ and $tr$-$deg$ $K/\mathbb{F}_p \geq 1$. Let $A$ be a ring of type $R[d,m,n]^*$ and $f\in R$ be a regular parameter. Then all finitely generated projective modules over $A[M],$ $A[M]_f$ and $A[M] \otimes_R R(T)$ are free. When $M$ is free both results are due to Keshari and Lokhande.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信