{"title":"验证谱隙的数值估计","authors":"M. Kaluba, P. Nowak","doi":"10.1515/gcc-2018-0004","DOIUrl":null,"url":null,"abstract":"Abstract We establish a lower bound on the spectral gap of the Laplace operator on special linear groups using conic optimisation. In particular, this provides a constructive (but computer assisted) proof that these groups have the Kazhdan property (T). Software for such optimisation for other finitely presented groups is provided.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"18 1","pages":"33 - 41"},"PeriodicalIF":0.1000,"publicationDate":"2017-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Certifying numerical estimates of spectral gaps\",\"authors\":\"M. Kaluba, P. Nowak\",\"doi\":\"10.1515/gcc-2018-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We establish a lower bound on the spectral gap of the Laplace operator on special linear groups using conic optimisation. In particular, this provides a constructive (but computer assisted) proof that these groups have the Kazhdan property (T). Software for such optimisation for other finitely presented groups is provided.\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"18 1\",\"pages\":\"33 - 41\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2017-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gcc-2018-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2018-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract We establish a lower bound on the spectral gap of the Laplace operator on special linear groups using conic optimisation. In particular, this provides a constructive (but computer assisted) proof that these groups have the Kazhdan property (T). Software for such optimisation for other finitely presented groups is provided.