验证谱隙的数值估计

IF 0.1 Q4 MATHEMATICS
M. Kaluba, P. Nowak
{"title":"验证谱隙的数值估计","authors":"M. Kaluba, P. Nowak","doi":"10.1515/gcc-2018-0004","DOIUrl":null,"url":null,"abstract":"Abstract We establish a lower bound on the spectral gap of the Laplace operator on special linear groups using conic optimisation. In particular, this provides a constructive (but computer assisted) proof that these groups have the Kazhdan property (T). Software for such optimisation for other finitely presented groups is provided.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"18 1","pages":"33 - 41"},"PeriodicalIF":0.1000,"publicationDate":"2017-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Certifying numerical estimates of spectral gaps\",\"authors\":\"M. Kaluba, P. Nowak\",\"doi\":\"10.1515/gcc-2018-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We establish a lower bound on the spectral gap of the Laplace operator on special linear groups using conic optimisation. In particular, this provides a constructive (but computer assisted) proof that these groups have the Kazhdan property (T). Software for such optimisation for other finitely presented groups is provided.\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"18 1\",\"pages\":\"33 - 41\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2017-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gcc-2018-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2018-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

摘要利用二次优化方法建立了特殊线性群上拉普拉斯算子谱间隙的下界。特别是,这提供了一个建设性的(但计算机辅助的)证明,证明这些群具有哈萨克斯坦性质(T)。为其他有限呈现的群提供了这种优化软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Certifying numerical estimates of spectral gaps
Abstract We establish a lower bound on the spectral gap of the Laplace operator on special linear groups using conic optimisation. In particular, this provides a constructive (but computer assisted) proof that these groups have the Kazhdan property (T). Software for such optimisation for other finitely presented groups is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信