二比特均匀量化器优化的不同准则

J. Nikolić, Z. Perić, Stefan S. Tomic, D. Aleksić
{"title":"二比特均匀量化器优化的不同准则","authors":"J. Nikolić, Z. Perić, Stefan S. Tomic, D. Aleksić","doi":"10.1109/INFOTEH53737.2022.9751268","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of determining the most influential parameter of the two-bit uniform quantizer, i.e. the support region threshold ($x$max), according to different optimization criteria. We analyze the dependences of the quantized neural network (QNN) model quality indicators on $\\boldsymbol{x_{\\max}}$, for the case of applying two-bit uniform quantization of weights in the post-training phase for the MNIST dataset. In addition to the theoretical quality indicator of quantized signal for the Laplacian distribution - theoretical SQNR, our quality indicators are also the accuracy of QNN and the experimentally determined SQNR for the Laplacian-like weight distribution in the three-layer fully connected neural network. The goal is to determine the results of optimizing these quality indicators per Xmax for the considered research framework and to make their comparison for setting a good foundation for future research.","PeriodicalId":6839,"journal":{"name":"2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH)","volume":"27 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Different Criteria for Optimizing the Two-bit Uniform Quantizer\",\"authors\":\"J. Nikolić, Z. Perić, Stefan S. Tomic, D. Aleksić\",\"doi\":\"10.1109/INFOTEH53737.2022.9751268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the problem of determining the most influential parameter of the two-bit uniform quantizer, i.e. the support region threshold ($x$max), according to different optimization criteria. We analyze the dependences of the quantized neural network (QNN) model quality indicators on $\\\\boldsymbol{x_{\\\\max}}$, for the case of applying two-bit uniform quantization of weights in the post-training phase for the MNIST dataset. In addition to the theoretical quality indicator of quantized signal for the Laplacian distribution - theoretical SQNR, our quality indicators are also the accuracy of QNN and the experimentally determined SQNR for the Laplacian-like weight distribution in the three-layer fully connected neural network. The goal is to determine the results of optimizing these quality indicators per Xmax for the considered research framework and to make their comparison for setting a good foundation for future research.\",\"PeriodicalId\":6839,\"journal\":{\"name\":\"2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH)\",\"volume\":\"27 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOTEH53737.2022.9751268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOTEH53737.2022.9751268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们解决了根据不同的优化准则确定两位均匀量化器中最具影响力的参数,即支持区域阈值($x$max)的问题。我们分析了量化神经网络(QNN)模型质量指标对$\boldsymbol{x_{\max}}$的依赖关系,用于在MNIST数据集的后训练阶段应用二元均匀量化权重的情况。除了拉普拉斯分布的量化信号的理论质量指标——理论SQNR外,我们的质量指标还包括QNN的精度和实验确定的三层全连接神经网络中类拉普拉斯权重分布的SQNR。目的是确定所考虑的研究框架中每Xmax优化这些质量指标的结果,并对其进行比较,为今后的研究奠定良好的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Different Criteria for Optimizing the Two-bit Uniform Quantizer
In this paper, we address the problem of determining the most influential parameter of the two-bit uniform quantizer, i.e. the support region threshold ($x$max), according to different optimization criteria. We analyze the dependences of the quantized neural network (QNN) model quality indicators on $\boldsymbol{x_{\max}}$, for the case of applying two-bit uniform quantization of weights in the post-training phase for the MNIST dataset. In addition to the theoretical quality indicator of quantized signal for the Laplacian distribution - theoretical SQNR, our quality indicators are also the accuracy of QNN and the experimentally determined SQNR for the Laplacian-like weight distribution in the three-layer fully connected neural network. The goal is to determine the results of optimizing these quality indicators per Xmax for the considered research framework and to make their comparison for setting a good foundation for future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信