拟凹形多层规划问题

H. Sadeghi, M. Esmaeili
{"title":"拟凹形多层规划问题","authors":"H. Sadeghi, M. Esmaeili","doi":"10.1142/S0217595921500263","DOIUrl":null,"url":null,"abstract":"Multilevel programming appears in many decision-making situations. Investigation of the main properties of quasiconcave multilevel programming (QCMP) problems, to date, is limited to bilevel programming (only two levels). In this paper, first, we present an extension of the properties of quasiconcave bilevel programming (QCBP) problems for the case when three levels exist. Then, by induction on [Formula: see text] (the number of levels), we prove the existence of an extreme point of the polyhedral constraint region that solves the QCMP problem under given conditions. Ultimately, a number of numerical examples are illustrated to verify the results.","PeriodicalId":8478,"journal":{"name":"Asia Pac. J. Oper. Res.","volume":"18 1","pages":"2150026:1-2150026:15"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Quasiconcave Multilevel Programming Problems\",\"authors\":\"H. Sadeghi, M. Esmaeili\",\"doi\":\"10.1142/S0217595921500263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multilevel programming appears in many decision-making situations. Investigation of the main properties of quasiconcave multilevel programming (QCMP) problems, to date, is limited to bilevel programming (only two levels). In this paper, first, we present an extension of the properties of quasiconcave bilevel programming (QCBP) problems for the case when three levels exist. Then, by induction on [Formula: see text] (the number of levels), we prove the existence of an extreme point of the polyhedral constraint region that solves the QCMP problem under given conditions. Ultimately, a number of numerical examples are illustrated to verify the results.\",\"PeriodicalId\":8478,\"journal\":{\"name\":\"Asia Pac. J. Oper. Res.\",\"volume\":\"18 1\",\"pages\":\"2150026:1-2150026:15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia Pac. J. Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0217595921500263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia Pac. J. Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0217595921500263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多层次规划出现在许多决策情境中。迄今为止,对拟凹洞多层规划(QCMP)问题的主要性质的研究仅限于双层规划(只有两层)。本文首先给出了拟凸洞双层规划(QCBP)问题在存在三层情况下的性质的推广。然后,通过对[公式:见文](层数)的归纳法,证明了给定条件下求解QCMP问题的多面体约束区域的极值点的存在性。最后,通过数值算例对结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Quasiconcave Multilevel Programming Problems
Multilevel programming appears in many decision-making situations. Investigation of the main properties of quasiconcave multilevel programming (QCMP) problems, to date, is limited to bilevel programming (only two levels). In this paper, first, we present an extension of the properties of quasiconcave bilevel programming (QCBP) problems for the case when three levels exist. Then, by induction on [Formula: see text] (the number of levels), we prove the existence of an extreme point of the polyhedral constraint region that solves the QCMP problem under given conditions. Ultimately, a number of numerical examples are illustrated to verify the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信