关于树突和有限图上的极小集的注释

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
E. Makhrova
{"title":"关于树突和有限图上的极小集的注释","authors":"E. Makhrova","doi":"10.1080/10236198.2023.2220417","DOIUrl":null,"url":null,"abstract":"ABSTRACT Let X be a dendrite and let be a continuous map that has an infinite minimal set M in X. In the article we obtain conditions on the structure of a dendrite X and the set M, under which f has an arc horseshoe, and, hence, f has a positive topological entropy. We show that this result is not correct both for continuous maps with an empty set of periodic points, and for continuous maps with a non-empty set of periodic points on finite graphs.","PeriodicalId":15616,"journal":{"name":"Journal of Difference Equations and Applications","volume":"52 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Remarks on minimal sets on dendrites and finite graphs\",\"authors\":\"E. Makhrova\",\"doi\":\"10.1080/10236198.2023.2220417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Let X be a dendrite and let be a continuous map that has an infinite minimal set M in X. In the article we obtain conditions on the structure of a dendrite X and the set M, under which f has an arc horseshoe, and, hence, f has a positive topological entropy. We show that this result is not correct both for continuous maps with an empty set of periodic points, and for continuous maps with a non-empty set of periodic points on finite graphs.\",\"PeriodicalId\":15616,\"journal\":{\"name\":\"Journal of Difference Equations and Applications\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Difference Equations and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10236198.2023.2220417\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Difference Equations and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10236198.2023.2220417","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remarks on minimal sets on dendrites and finite graphs
ABSTRACT Let X be a dendrite and let be a continuous map that has an infinite minimal set M in X. In the article we obtain conditions on the structure of a dendrite X and the set M, under which f has an arc horseshoe, and, hence, f has a positive topological entropy. We show that this result is not correct both for continuous maps with an empty set of periodic points, and for continuous maps with a non-empty set of periodic points on finite graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
9.10%
发文量
70
审稿时长
4-8 weeks
期刊介绍: Journal of Difference Equations and Applications presents state-of-the-art papers on difference equations and discrete dynamical systems and the academic, pure and applied problems in which they arise. The Journal is composed of original research, expository and review articles, and papers that present novel concepts in application and techniques. The scope of the Journal includes all areas in mathematics that contain significant theory or applications in difference equations or discrete dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信