混凝土用花岗岩骨料反应性等级的测定

A. Rutkauskas, D. Nagrockienė, G. Skripkiūnas, K. Barkauskas
{"title":"混凝土用花岗岩骨料反应性等级的测定","authors":"A. Rutkauskas, D. Nagrockienė, G. Skripkiūnas, K. Barkauskas","doi":"10.2478/cons-2017-0005","DOIUrl":null,"url":null,"abstract":"Abstract Granite rubble is one of the most frequently used aggregates in concrete manufacturing. Granite rubble is considered to be a non-reactive aggregate, however, depending on the quarry, granite may have various impurities including harmful minerals containing active SiO2. The alkali – silica reaction is among the chemical reactions that have a significant effect on the durability of concrete. During the alkali – silica reaction certain forms of silica present in concrete aggregates react with high alkali content leading to formation of hygroscopic gel that expands in humid environment and slowly, although strongly enough degrades concrete structures. Concrete rubble of 3 different fractions was used for the test: 2/8 (Mix D); 11/16 (Mix E); 5/11 (Mix G). The tests revealed that granite rubble used for the tests contained few reactive rocks containing amorphous silica because after 14 days the expansion did not exceed 0.1 % ((D Mix expanded by 0.059 %, E Mix expanded by 0.066 %, G Mix expanded by 0.079 %) according to RILEM AAR-2 test method. After 56 days of testing none of the test specimens demonstrated significant micro-cracking and scaling specific to alkali corrosion; only gel deposits on the surface were observed.","PeriodicalId":22024,"journal":{"name":"Stroitel stvo nauka i obrazovanie [Construction Science and Education]","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Determining Reactivity Level of Granite Aggregate for Concrete\",\"authors\":\"A. Rutkauskas, D. Nagrockienė, G. Skripkiūnas, K. Barkauskas\",\"doi\":\"10.2478/cons-2017-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Granite rubble is one of the most frequently used aggregates in concrete manufacturing. Granite rubble is considered to be a non-reactive aggregate, however, depending on the quarry, granite may have various impurities including harmful minerals containing active SiO2. The alkali – silica reaction is among the chemical reactions that have a significant effect on the durability of concrete. During the alkali – silica reaction certain forms of silica present in concrete aggregates react with high alkali content leading to formation of hygroscopic gel that expands in humid environment and slowly, although strongly enough degrades concrete structures. Concrete rubble of 3 different fractions was used for the test: 2/8 (Mix D); 11/16 (Mix E); 5/11 (Mix G). The tests revealed that granite rubble used for the tests contained few reactive rocks containing amorphous silica because after 14 days the expansion did not exceed 0.1 % ((D Mix expanded by 0.059 %, E Mix expanded by 0.066 %, G Mix expanded by 0.079 %) according to RILEM AAR-2 test method. After 56 days of testing none of the test specimens demonstrated significant micro-cracking and scaling specific to alkali corrosion; only gel deposits on the surface were observed.\",\"PeriodicalId\":22024,\"journal\":{\"name\":\"Stroitel stvo nauka i obrazovanie [Construction Science and Education]\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stroitel stvo nauka i obrazovanie [Construction Science and Education]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/cons-2017-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stroitel stvo nauka i obrazovanie [Construction Science and Education]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cons-2017-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

花岗岩碎石是混凝土制造中最常用的骨料之一。花岗岩碎石被认为是一种非活性骨料,然而,根据采石场的不同,花岗岩可能含有各种杂质,包括含有活性SiO2的有害矿物。碱-硅反应是对混凝土耐久性有重要影响的化学反应之一。在碱-二氧化硅反应过程中,混凝土骨料中存在的某些形式的二氧化硅与高碱含量发生反应,导致形成吸湿凝胶,在潮湿环境中膨胀,虽然足够强烈,但缓慢地降解混凝土结构。试验采用3种不同分数的混凝土碎石:2/8(混合D);11/16(混合E);根据RILEM AAR-2试验方法,试验表明,用于试验的花岗岩碎石中含有少量含无晶态二氧化硅的活性岩,因为14天后膨胀率不超过0.1% ((D混合膨胀0.059%,E混合膨胀0.066%,G混合膨胀0.079%)。经过56天的测试,没有一个试样显示出明显的碱腐蚀微开裂和结垢;仅在表面观察到凝胶沉积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determining Reactivity Level of Granite Aggregate for Concrete
Abstract Granite rubble is one of the most frequently used aggregates in concrete manufacturing. Granite rubble is considered to be a non-reactive aggregate, however, depending on the quarry, granite may have various impurities including harmful minerals containing active SiO2. The alkali – silica reaction is among the chemical reactions that have a significant effect on the durability of concrete. During the alkali – silica reaction certain forms of silica present in concrete aggregates react with high alkali content leading to formation of hygroscopic gel that expands in humid environment and slowly, although strongly enough degrades concrete structures. Concrete rubble of 3 different fractions was used for the test: 2/8 (Mix D); 11/16 (Mix E); 5/11 (Mix G). The tests revealed that granite rubble used for the tests contained few reactive rocks containing amorphous silica because after 14 days the expansion did not exceed 0.1 % ((D Mix expanded by 0.059 %, E Mix expanded by 0.066 %, G Mix expanded by 0.079 %) according to RILEM AAR-2 test method. After 56 days of testing none of the test specimens demonstrated significant micro-cracking and scaling specific to alkali corrosion; only gel deposits on the surface were observed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信