索引视频电子学习资源的网络爬虫:YouTube案例研究

B. Iancu
{"title":"索引视频电子学习资源的网络爬虫:YouTube案例研究","authors":"B. Iancu","doi":"10.12948/issn14531305/23.2.2019.02","DOIUrl":null,"url":null,"abstract":"The main objective of the current paper is to develop and validate an algorithm focused on automatically indexing YouTube e-learning resources about a certain domain of interest. After identifying the keywords specific to the desired domain, a web crawler is developed for evaluating video resources (from the YouTube platform) in terms of relevance for that domain. Once the most relevant video resources are found, they are indexed with the usage of a NER engine applied on their transcripts. In this manner, semantic queries can be used further in order to find exactly the needed information inside these multimedia resources. The crawler will repeat the indexing process daily in order to maintain the repository of semantically indexed videos up to date. The final chapter presents the obtained results together with the validation of the model.","PeriodicalId":53248,"journal":{"name":"Informatica economica","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Web Crawler for Indexing Video e-Learning Resources: A YouTube Case Study\",\"authors\":\"B. Iancu\",\"doi\":\"10.12948/issn14531305/23.2.2019.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of the current paper is to develop and validate an algorithm focused on automatically indexing YouTube e-learning resources about a certain domain of interest. After identifying the keywords specific to the desired domain, a web crawler is developed for evaluating video resources (from the YouTube platform) in terms of relevance for that domain. Once the most relevant video resources are found, they are indexed with the usage of a NER engine applied on their transcripts. In this manner, semantic queries can be used further in order to find exactly the needed information inside these multimedia resources. The crawler will repeat the indexing process daily in order to maintain the repository of semantically indexed videos up to date. The final chapter presents the obtained results together with the validation of the model.\",\"PeriodicalId\":53248,\"journal\":{\"name\":\"Informatica economica\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatica economica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12948/issn14531305/23.2.2019.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatica economica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12948/issn14531305/23.2.2019.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文的主要目标是开发和验证一种算法,该算法专注于自动索引关于某个感兴趣领域的YouTube电子学习资源。在确定特定于所需域的关键字之后,开发了一个网络爬虫,用于根据该域的相关性评估视频资源(来自YouTube平台)。一旦找到最相关的视频资源,就会使用NER引擎对其文本进行索引。通过这种方式,可以进一步使用语义查询,以便在这些多媒体资源中准确地找到所需的信息。爬虫将每天重复索引过程,以保持语义索引视频的存储库是最新的。最后一章给出了所得结果,并对模型进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Web Crawler for Indexing Video e-Learning Resources: A YouTube Case Study
The main objective of the current paper is to develop and validate an algorithm focused on automatically indexing YouTube e-learning resources about a certain domain of interest. After identifying the keywords specific to the desired domain, a web crawler is developed for evaluating video resources (from the YouTube platform) in terms of relevance for that domain. Once the most relevant video resources are found, they are indexed with the usage of a NER engine applied on their transcripts. In this manner, semantic queries can be used further in order to find exactly the needed information inside these multimedia resources. The crawler will repeat the indexing process daily in order to maintain the repository of semantically indexed videos up to date. The final chapter presents the obtained results together with the validation of the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
17
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信