基于不同线性组合的改进估计

Shabnum Gul
{"title":"基于不同线性组合的改进估计","authors":"Shabnum Gul","doi":"10.18782/2582-2845.8488","DOIUrl":null,"url":null,"abstract":"The present study was taken under consideration in order to propose new modified estimators using different linear combinations for population mean using the auxiliary information of MidRange with coefficient of correlation, coefficient of variation and coefficient of skewness in order to achieve more precision in estimates than the already existing estimators. The properties associated with the proposed estimators are assessed by mean square error and bias and compared with the existing estimators. In the support of the theoretical proposed work we have given numerical illustration.","PeriodicalId":13334,"journal":{"name":"Indian Journal of Pure & Applied Biosciences","volume":"108 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified Estimation Using Different Linear Combination\",\"authors\":\"Shabnum Gul\",\"doi\":\"10.18782/2582-2845.8488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study was taken under consideration in order to propose new modified estimators using different linear combinations for population mean using the auxiliary information of MidRange with coefficient of correlation, coefficient of variation and coefficient of skewness in order to achieve more precision in estimates than the already existing estimators. The properties associated with the proposed estimators are assessed by mean square error and bias and compared with the existing estimators. In the support of the theoretical proposed work we have given numerical illustration.\",\"PeriodicalId\":13334,\"journal\":{\"name\":\"Indian Journal of Pure & Applied Biosciences\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pure & Applied Biosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18782/2582-2845.8488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure & Applied Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18782/2582-2845.8488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在此基础上,利用相关系数、变异系数和偏度系数的MidRange辅助信息,利用不同的总体均值线性组合,提出了新的改进估计量,以达到比现有估计量更高的估计精度。通过均方误差和偏置来评估与所提出估计量相关的性质,并与现有估计量进行比较。为了支持理论提出的工作,我们给出了数值说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified Estimation Using Different Linear Combination
The present study was taken under consideration in order to propose new modified estimators using different linear combinations for population mean using the auxiliary information of MidRange with coefficient of correlation, coefficient of variation and coefficient of skewness in order to achieve more precision in estimates than the already existing estimators. The properties associated with the proposed estimators are assessed by mean square error and bias and compared with the existing estimators. In the support of the theoretical proposed work we have given numerical illustration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信