粗糙噪声驱动下抛物型Anderson模型的空间平均

D. Nualart, Xiaoming Song, Guangqu Zheng
{"title":"粗糙噪声驱动下抛物型Anderson模型的空间平均","authors":"D. Nualart, Xiaoming Song, Guangqu Zheng","doi":"10.30757/ALEA.V18-33","DOIUrl":null,"url":null,"abstract":"In this paper, we study spatial averages for the parabolic Anderson model in the Skorohod sense driven by rough Gaussian noise, which is colored in space and time. We include the case of a fractional noise with Hurst parameters $H_0$ in time and $H_1$ in space, satisfying $H_0 \\in (1/2,1)$, $H_1\\in (0,1/2)$ and $H_0 + H_1 > 3/4$. Our main result is a functional central limit theorem for the spatial averages. As an important ingredient of our analysis, we present a Feynman-Kac formula that is new for these values of the Hurst parameters.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Spatial averages for the parabolic Anderson model driven by rough noise\",\"authors\":\"D. Nualart, Xiaoming Song, Guangqu Zheng\",\"doi\":\"10.30757/ALEA.V18-33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study spatial averages for the parabolic Anderson model in the Skorohod sense driven by rough Gaussian noise, which is colored in space and time. We include the case of a fractional noise with Hurst parameters $H_0$ in time and $H_1$ in space, satisfying $H_0 \\\\in (1/2,1)$, $H_1\\\\in (0,1/2)$ and $H_0 + H_1 > 3/4$. Our main result is a functional central limit theorem for the spatial averages. As an important ingredient of our analysis, we present a Feynman-Kac formula that is new for these values of the Hurst parameters.\",\"PeriodicalId\":8470,\"journal\":{\"name\":\"arXiv: Probability\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30757/ALEA.V18-33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30757/ALEA.V18-33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文研究了粗糙高斯噪声驱动下的抛物型Anderson模型在Skorohod意义上的空间平均。我们考虑了时间参数为$H_0$、空间参数为$H_1$的分数阶噪声,满足$H_0 \in(1/2,1)$、$H_1\in(0,1/2)$和$H_0 + H_1 > 3/4$。我们的主要结果是空间平均值的一个泛函中心极限定理。作为我们分析的一个重要组成部分,我们提出了一个新的关于赫斯特参数值的费曼-卡茨公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial averages for the parabolic Anderson model driven by rough noise
In this paper, we study spatial averages for the parabolic Anderson model in the Skorohod sense driven by rough Gaussian noise, which is colored in space and time. We include the case of a fractional noise with Hurst parameters $H_0$ in time and $H_1$ in space, satisfying $H_0 \in (1/2,1)$, $H_1\in (0,1/2)$ and $H_0 + H_1 > 3/4$. Our main result is a functional central limit theorem for the spatial averages. As an important ingredient of our analysis, we present a Feynman-Kac formula that is new for these values of the Hurst parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信