{"title":"面部皱纹检测的标记点过程模型","authors":"Seong-Gyun Jeong, Y. Tarabalka, J. Zerubia","doi":"10.1109/ICIP.2014.7025278","DOIUrl":null,"url":null,"abstract":"We propose a new model for wrinkle detection in human faces using a marked point process. In order to detect an arbitrary shape of wrinkles, we represent them as a set of line segments, where each segment is characterized by its length and orientation. We propose a probability density of wrinkle model which exploits local edge profile and geometric properties of wrinkles. To optimize the probability density of wrinkle model, we employ reversible jump Markov chain Monte Carlo sampler with delayed rejection. Experimental results demonstrate that the new algorithm detects facial wrinkles more accurately than a recent state-of-the-art method.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"36 1","pages":"1391-1394"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Marked point process model for facial wrinkle detection\",\"authors\":\"Seong-Gyun Jeong, Y. Tarabalka, J. Zerubia\",\"doi\":\"10.1109/ICIP.2014.7025278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new model for wrinkle detection in human faces using a marked point process. In order to detect an arbitrary shape of wrinkles, we represent them as a set of line segments, where each segment is characterized by its length and orientation. We propose a probability density of wrinkle model which exploits local edge profile and geometric properties of wrinkles. To optimize the probability density of wrinkle model, we employ reversible jump Markov chain Monte Carlo sampler with delayed rejection. Experimental results demonstrate that the new algorithm detects facial wrinkles more accurately than a recent state-of-the-art method.\",\"PeriodicalId\":6856,\"journal\":{\"name\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"36 1\",\"pages\":\"1391-1394\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2014.7025278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Marked point process model for facial wrinkle detection
We propose a new model for wrinkle detection in human faces using a marked point process. In order to detect an arbitrary shape of wrinkles, we represent them as a set of line segments, where each segment is characterized by its length and orientation. We propose a probability density of wrinkle model which exploits local edge profile and geometric properties of wrinkles. To optimize the probability density of wrinkle model, we employ reversible jump Markov chain Monte Carlo sampler with delayed rejection. Experimental results demonstrate that the new algorithm detects facial wrinkles more accurately than a recent state-of-the-art method.