{"title":"特刊:ISSRE 2018,第29届IEEE软件可靠性工程国际研讨会","authors":"R. Natella, Sudipto Ghosh","doi":"10.1002/stvr.1732","DOIUrl":null,"url":null,"abstract":"This special issue contains extended versions of five papers from the 29th IEEE International Symposium on Software Reliability Engineering (ISSRE 2018). ISSRE is focused on innovative techniques and tools for assessing, predicting, and improving the reliability, safety, and security of software products. The symposium emphasizes scientific methods, industrial relevance, rigorous empirical validation, and shared value of practical tools and experiences. ISSRE boasts a large industry participation, with authors and participants from international corporations. Based on the reviews from the programme committee members and discussions with the editorsin-chief regarding the relevance of the papers to the journal’s topics of interest, we invited the authors of seven papers to extend their work and submit to this special issue. The extended papers went through several rounds of revision during the rigorous peer-review process. The papers were reviewed by a panel of experts that included, but was not limited to, members of the ISSRE 2018 Program Committee. Five papers successfully completed the review process and are included in this special issue. The first paper, Using Mutants to Help Developers Distinguish and Debug (Compiler) Faults by Josie Holmes and Alex Groce, introduces a distance metric for failing test cases based on the intuition that failing tests that kill the same mutants are likely related to the same fault. This issue is especially relevant for very large test suites, as in the ‘compiler fuzzer taming’ problem. The paper evaluates the metric on two widely used real-world compilers by combining the metric with state-of-the-art methods for fault identification and localization. The second paper, Testing Microservice Architectures for Operational Reliability by Roberto Pietrantuono, Stefano Russo, and Antonio Guerriero, proposes a method for quantitatively assessing the probability of failures (‘operational reliability’) in the context of microservice applications, where the usage profile changes often for reasons such as frequent releases. The method achieves significant improvements in terms of accuracy and efficiency of reliability assessment on three open-source applications. The third paper, Model-based Hypothesis Testing of Uncertain Software Systems by Matteo Camilli, Angelo Gargantini, and Patrizia Scandurra, presents a methodology for combining model-based testing with Bayesian reasoning for testing systems with stochastic QoS properties using a model with uncertain parameters. The paper provides a detailed and reproducible case study for demonstrating the methodology. The fourth paper, Fully Automated HTML and Javascript Rewriting for Constructing a Self-healing Web Proxy by Thomas Durieux, Youssef Hamadi, and Martin Monperrus, applies the failure-oblivious computing principle to web applications. Errors are masked through HTML and Javascript code rewriting (e.g., to skip the faulty line) with an HTTP proxy and a browser extension, respectively. The approach is empirically evaluated on a large, publicly available data set of reproducible Javascript errors. A significant share of errors can be automatically self-healed with this simple strategy. The fifth paper, Facilitating Program Performance Profiling via Evolutionary Symbolic Execution by Andrea Aquino, Pietro Braione, Giovanni Denaro, and Pasquale Salza, pursues performance","PeriodicalId":49506,"journal":{"name":"Software Testing Verification & Reliability","volume":"51 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2020-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Special issue: ISSRE 2018, the 29th IEEE International Symposium on Software Reliability Engineering\",\"authors\":\"R. Natella, Sudipto Ghosh\",\"doi\":\"10.1002/stvr.1732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This special issue contains extended versions of five papers from the 29th IEEE International Symposium on Software Reliability Engineering (ISSRE 2018). ISSRE is focused on innovative techniques and tools for assessing, predicting, and improving the reliability, safety, and security of software products. The symposium emphasizes scientific methods, industrial relevance, rigorous empirical validation, and shared value of practical tools and experiences. ISSRE boasts a large industry participation, with authors and participants from international corporations. Based on the reviews from the programme committee members and discussions with the editorsin-chief regarding the relevance of the papers to the journal’s topics of interest, we invited the authors of seven papers to extend their work and submit to this special issue. The extended papers went through several rounds of revision during the rigorous peer-review process. The papers were reviewed by a panel of experts that included, but was not limited to, members of the ISSRE 2018 Program Committee. Five papers successfully completed the review process and are included in this special issue. The first paper, Using Mutants to Help Developers Distinguish and Debug (Compiler) Faults by Josie Holmes and Alex Groce, introduces a distance metric for failing test cases based on the intuition that failing tests that kill the same mutants are likely related to the same fault. This issue is especially relevant for very large test suites, as in the ‘compiler fuzzer taming’ problem. The paper evaluates the metric on two widely used real-world compilers by combining the metric with state-of-the-art methods for fault identification and localization. The second paper, Testing Microservice Architectures for Operational Reliability by Roberto Pietrantuono, Stefano Russo, and Antonio Guerriero, proposes a method for quantitatively assessing the probability of failures (‘operational reliability’) in the context of microservice applications, where the usage profile changes often for reasons such as frequent releases. The method achieves significant improvements in terms of accuracy and efficiency of reliability assessment on three open-source applications. The third paper, Model-based Hypothesis Testing of Uncertain Software Systems by Matteo Camilli, Angelo Gargantini, and Patrizia Scandurra, presents a methodology for combining model-based testing with Bayesian reasoning for testing systems with stochastic QoS properties using a model with uncertain parameters. The paper provides a detailed and reproducible case study for demonstrating the methodology. The fourth paper, Fully Automated HTML and Javascript Rewriting for Constructing a Self-healing Web Proxy by Thomas Durieux, Youssef Hamadi, and Martin Monperrus, applies the failure-oblivious computing principle to web applications. Errors are masked through HTML and Javascript code rewriting (e.g., to skip the faulty line) with an HTTP proxy and a browser extension, respectively. The approach is empirically evaluated on a large, publicly available data set of reproducible Javascript errors. A significant share of errors can be automatically self-healed with this simple strategy. The fifth paper, Facilitating Program Performance Profiling via Evolutionary Symbolic Execution by Andrea Aquino, Pietro Braione, Giovanni Denaro, and Pasquale Salza, pursues performance\",\"PeriodicalId\":49506,\"journal\":{\"name\":\"Software Testing Verification & Reliability\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software Testing Verification & Reliability\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/stvr.1732\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Testing Verification & Reliability","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/stvr.1732","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Special issue: ISSRE 2018, the 29th IEEE International Symposium on Software Reliability Engineering
This special issue contains extended versions of five papers from the 29th IEEE International Symposium on Software Reliability Engineering (ISSRE 2018). ISSRE is focused on innovative techniques and tools for assessing, predicting, and improving the reliability, safety, and security of software products. The symposium emphasizes scientific methods, industrial relevance, rigorous empirical validation, and shared value of practical tools and experiences. ISSRE boasts a large industry participation, with authors and participants from international corporations. Based on the reviews from the programme committee members and discussions with the editorsin-chief regarding the relevance of the papers to the journal’s topics of interest, we invited the authors of seven papers to extend their work and submit to this special issue. The extended papers went through several rounds of revision during the rigorous peer-review process. The papers were reviewed by a panel of experts that included, but was not limited to, members of the ISSRE 2018 Program Committee. Five papers successfully completed the review process and are included in this special issue. The first paper, Using Mutants to Help Developers Distinguish and Debug (Compiler) Faults by Josie Holmes and Alex Groce, introduces a distance metric for failing test cases based on the intuition that failing tests that kill the same mutants are likely related to the same fault. This issue is especially relevant for very large test suites, as in the ‘compiler fuzzer taming’ problem. The paper evaluates the metric on two widely used real-world compilers by combining the metric with state-of-the-art methods for fault identification and localization. The second paper, Testing Microservice Architectures for Operational Reliability by Roberto Pietrantuono, Stefano Russo, and Antonio Guerriero, proposes a method for quantitatively assessing the probability of failures (‘operational reliability’) in the context of microservice applications, where the usage profile changes often for reasons such as frequent releases. The method achieves significant improvements in terms of accuracy and efficiency of reliability assessment on three open-source applications. The third paper, Model-based Hypothesis Testing of Uncertain Software Systems by Matteo Camilli, Angelo Gargantini, and Patrizia Scandurra, presents a methodology for combining model-based testing with Bayesian reasoning for testing systems with stochastic QoS properties using a model with uncertain parameters. The paper provides a detailed and reproducible case study for demonstrating the methodology. The fourth paper, Fully Automated HTML and Javascript Rewriting for Constructing a Self-healing Web Proxy by Thomas Durieux, Youssef Hamadi, and Martin Monperrus, applies the failure-oblivious computing principle to web applications. Errors are masked through HTML and Javascript code rewriting (e.g., to skip the faulty line) with an HTTP proxy and a browser extension, respectively. The approach is empirically evaluated on a large, publicly available data set of reproducible Javascript errors. A significant share of errors can be automatically self-healed with this simple strategy. The fifth paper, Facilitating Program Performance Profiling via Evolutionary Symbolic Execution by Andrea Aquino, Pietro Braione, Giovanni Denaro, and Pasquale Salza, pursues performance
期刊介绍:
The journal is the premier outlet for research results on the subjects of testing, verification and reliability. Readers will find useful research on issues pertaining to building better software and evaluating it.
The journal is unique in its emphasis on theoretical foundations and applications to real-world software development. The balance of theory, empirical work, and practical applications provide readers with better techniques for testing, verifying and improving the reliability of software.
The journal targets researchers, practitioners, educators and students that have a vested interest in results generated by high-quality testing, verification and reliability modeling and evaluation of software. Topics of special interest include, but are not limited to:
-New criteria for software testing and verification
-Application of existing software testing and verification techniques to new types of software, including web applications, web services, embedded software, aspect-oriented software, and software architectures
-Model based testing
-Formal verification techniques such as model-checking
-Comparison of testing and verification techniques
-Measurement of and metrics for testing, verification and reliability
-Industrial experience with cutting edge techniques
-Descriptions and evaluations of commercial and open-source software testing tools
-Reliability modeling, measurement and application
-Testing and verification of software security
-Automated test data generation
-Process issues and methods
-Non-functional testing