随机Wasserstein重心计算:具有统计保证的重抽样

IF 1.9 Q1 MATHEMATICS, APPLIED
F. Heinemann, A. Munk, Y. Zemel
{"title":"随机Wasserstein重心计算:具有统计保证的重抽样","authors":"F. Heinemann, A. Munk, Y. Zemel","doi":"10.1137/20m1385263","DOIUrl":null,"url":null,"abstract":"We propose a hybrid resampling method to approximate finitely supported Wasserstein barycenters on large-scale datasets, which can be combined with any exact solver. Nonasymptotic bounds on the expected error of the objective value as well as the barycenters themselves allow to calibrate computational cost and statistical accuracy. The rate of these upper bounds is shown to be optimal and independent of the underlying dimension, which appears only in the constants. Using a simple modification of the subgradient descent algorithm of Cuturi and Doucet, we showcase the applicability of our method on a myriad of simulated datasets, as well as a real-data example which are out of reach for state of the art algorithms for computing Wasserstein barycenters.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"69 1","pages":"229-259"},"PeriodicalIF":1.9000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Randomized Wasserstein Barycenter Computation: Resampling with Statistical Guarantees\",\"authors\":\"F. Heinemann, A. Munk, Y. Zemel\",\"doi\":\"10.1137/20m1385263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a hybrid resampling method to approximate finitely supported Wasserstein barycenters on large-scale datasets, which can be combined with any exact solver. Nonasymptotic bounds on the expected error of the objective value as well as the barycenters themselves allow to calibrate computational cost and statistical accuracy. The rate of these upper bounds is shown to be optimal and independent of the underlying dimension, which appears only in the constants. Using a simple modification of the subgradient descent algorithm of Cuturi and Doucet, we showcase the applicability of our method on a myriad of simulated datasets, as well as a real-data example which are out of reach for state of the art algorithms for computing Wasserstein barycenters.\",\"PeriodicalId\":74797,\"journal\":{\"name\":\"SIAM journal on mathematics of data science\",\"volume\":\"69 1\",\"pages\":\"229-259\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2020-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM journal on mathematics of data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/20m1385263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/20m1385263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 16

摘要

我们提出了一种混合重采样方法来近似大规模数据集上有限支持的Wasserstein质心,该方法可以与任何精确求解器结合使用。目标值的期望误差的非渐近边界以及质心本身允许校准计算成本和统计精度。这些上界的速率被证明是最优的,并且与底层维度无关,它只出现在常数中。通过对Cuturi和Doucet的次梯度下降算法的简单修改,我们展示了我们的方法在无数模拟数据集上的适用性,以及一个真实数据示例,这些示例对于计算Wasserstein质心的最先进算法来说是无法达到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Randomized Wasserstein Barycenter Computation: Resampling with Statistical Guarantees
We propose a hybrid resampling method to approximate finitely supported Wasserstein barycenters on large-scale datasets, which can be combined with any exact solver. Nonasymptotic bounds on the expected error of the objective value as well as the barycenters themselves allow to calibrate computational cost and statistical accuracy. The rate of these upper bounds is shown to be optimal and independent of the underlying dimension, which appears only in the constants. Using a simple modification of the subgradient descent algorithm of Cuturi and Doucet, we showcase the applicability of our method on a myriad of simulated datasets, as well as a real-data example which are out of reach for state of the art algorithms for computing Wasserstein barycenters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信