ATI 425初始层状组织变形行为及加工图

R. Mahdavi, E. Emadoddin, S. M. Abbasi
{"title":"ATI 425初始层状组织变形行为及加工图","authors":"R. Mahdavi, E. Emadoddin, S. M. Abbasi","doi":"10.30544/832","DOIUrl":null,"url":null,"abstract":"The effect of hot compression temperatures and strain rates on deformation behavior and resultant microstructure of ATI 425 alloy with initial lamellar microstructure was investigated in this study. The temperature and strain rate of the hot compression test were chosen to be in the 700-1100 °C and 0.001-1 s-1 ranges, respectively. The stress-strain curve and microstructure evaluation show that the alloy's flow softening is associated with globularization and dynamic recrystallization mechanisms. The constitutive equation calculates the activation energy for the α/β and β regions to be 348 kJ/mol and 201 kJ/mol, respectively. Dynamic recovery and partial recrystallization are the dominant structure modification mechanisms in the beta single-phase region. Bending and fragmentation of alpha plates is the dominant mechanism of microstructure promotion in the α/β region at low temperatures and low strain rates, less than 0.1s-1. Local shear and alpha plate break-up are the main factors in structural modification at high strain rates, greater than 0.1s-1. The extracted process map at 0.5 strain revealed three zones: instability, safe zone, and peak zone, with power dissipation efficiencies of 0 -0.25%, 30-40%, and above 40%.","PeriodicalId":18466,"journal":{"name":"Metallurgical and Materials Engineering","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformation behavior and processing map of ATI 425 with initial lamellar microstructure\",\"authors\":\"R. Mahdavi, E. Emadoddin, S. M. Abbasi\",\"doi\":\"10.30544/832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of hot compression temperatures and strain rates on deformation behavior and resultant microstructure of ATI 425 alloy with initial lamellar microstructure was investigated in this study. The temperature and strain rate of the hot compression test were chosen to be in the 700-1100 °C and 0.001-1 s-1 ranges, respectively. The stress-strain curve and microstructure evaluation show that the alloy's flow softening is associated with globularization and dynamic recrystallization mechanisms. The constitutive equation calculates the activation energy for the α/β and β regions to be 348 kJ/mol and 201 kJ/mol, respectively. Dynamic recovery and partial recrystallization are the dominant structure modification mechanisms in the beta single-phase region. Bending and fragmentation of alpha plates is the dominant mechanism of microstructure promotion in the α/β region at low temperatures and low strain rates, less than 0.1s-1. Local shear and alpha plate break-up are the main factors in structural modification at high strain rates, greater than 0.1s-1. The extracted process map at 0.5 strain revealed three zones: instability, safe zone, and peak zone, with power dissipation efficiencies of 0 -0.25%, 30-40%, and above 40%.\",\"PeriodicalId\":18466,\"journal\":{\"name\":\"Metallurgical and Materials Engineering\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical and Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30544/832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30544/832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了热压缩温度和应变速率对ATI 425合金初始片层组织和变形行为的影响。热压缩试验温度选择在700 ~ 1100℃,应变速率选择在0.001 ~ 1 s-1。应力应变曲线和显微组织评价表明,合金的流变软化与球化和动态再结晶机制有关。通过本构方程计算得到α/β区和β区的活化能分别为348 kJ/mol和201 kJ/mol。在β单相区,动态恢复和部分再结晶是主要的结构改性机制。在低于0.1s-1的低温和低应变速率下,α板的弯曲和破碎是α/β区微观组织促进的主要机制。在大于0.1s-1的高应变速率下,局部剪切和α板破碎是导致结构变形的主要因素。在0.5应变下提取的过程图显示出三个区域:不稳定区、安全区和峰值区,功耗效率分别为0 -0.25%、30-40%和40%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deformation behavior and processing map of ATI 425 with initial lamellar microstructure
The effect of hot compression temperatures and strain rates on deformation behavior and resultant microstructure of ATI 425 alloy with initial lamellar microstructure was investigated in this study. The temperature and strain rate of the hot compression test were chosen to be in the 700-1100 °C and 0.001-1 s-1 ranges, respectively. The stress-strain curve and microstructure evaluation show that the alloy's flow softening is associated with globularization and dynamic recrystallization mechanisms. The constitutive equation calculates the activation energy for the α/β and β regions to be 348 kJ/mol and 201 kJ/mol, respectively. Dynamic recovery and partial recrystallization are the dominant structure modification mechanisms in the beta single-phase region. Bending and fragmentation of alpha plates is the dominant mechanism of microstructure promotion in the α/β region at low temperatures and low strain rates, less than 0.1s-1. Local shear and alpha plate break-up are the main factors in structural modification at high strain rates, greater than 0.1s-1. The extracted process map at 0.5 strain revealed three zones: instability, safe zone, and peak zone, with power dissipation efficiencies of 0 -0.25%, 30-40%, and above 40%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信