J. Stinville, M. Charpagne, R. Maaß, H. Proudhon, W. Ludwig, P. Callahan, F. Wang, I. Beyerlein, M. Echlin, T. Pollock
{"title":"从新兴的实验和数值方法对晶体滑移的塑性局部化的见解","authors":"J. Stinville, M. Charpagne, R. Maaß, H. Proudhon, W. Ludwig, P. Callahan, F. Wang, I. Beyerlein, M. Echlin, T. Pollock","doi":"10.1146/annurev-matsci-080921-102621","DOIUrl":null,"url":null,"abstract":"Advanced experimental and numerical approaches are being developed to capture the localization of plasticity at the nanometer scale as a function of the multiscale and heterogeneous microstructure present in metallic materials. These innovative approaches promise new avenues to understand microstructural effects on mechanical properties, accelerate alloy design, and enable more accurate mechanical property prediction. This article provides an overview of emerging approaches with a focus on the localization of plasticity by crystallographic slip. New insights into the mechanisms and mechanics of strain localization are addressed. The consequences of the localization of plasticity by deformation slip for mechanical properties of metallic materials are also detailed.","PeriodicalId":8055,"journal":{"name":"Annual Review of Materials Research","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Insights into Plastic Localization by Crystallographic Slip from Emerging Experimental and Numerical Approaches\",\"authors\":\"J. Stinville, M. Charpagne, R. Maaß, H. Proudhon, W. Ludwig, P. Callahan, F. Wang, I. Beyerlein, M. Echlin, T. Pollock\",\"doi\":\"10.1146/annurev-matsci-080921-102621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advanced experimental and numerical approaches are being developed to capture the localization of plasticity at the nanometer scale as a function of the multiscale and heterogeneous microstructure present in metallic materials. These innovative approaches promise new avenues to understand microstructural effects on mechanical properties, accelerate alloy design, and enable more accurate mechanical property prediction. This article provides an overview of emerging approaches with a focus on the localization of plasticity by crystallographic slip. New insights into the mechanisms and mechanics of strain localization are addressed. The consequences of the localization of plasticity by deformation slip for mechanical properties of metallic materials are also detailed.\",\"PeriodicalId\":8055,\"journal\":{\"name\":\"Annual Review of Materials Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-matsci-080921-102621\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1146/annurev-matsci-080921-102621","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Insights into Plastic Localization by Crystallographic Slip from Emerging Experimental and Numerical Approaches
Advanced experimental and numerical approaches are being developed to capture the localization of plasticity at the nanometer scale as a function of the multiscale and heterogeneous microstructure present in metallic materials. These innovative approaches promise new avenues to understand microstructural effects on mechanical properties, accelerate alloy design, and enable more accurate mechanical property prediction. This article provides an overview of emerging approaches with a focus on the localization of plasticity by crystallographic slip. New insights into the mechanisms and mechanics of strain localization are addressed. The consequences of the localization of plasticity by deformation slip for mechanical properties of metallic materials are also detailed.
期刊介绍:
The Annual Review of Materials Research, published since 1971, is a journal that covers significant developments in the field of materials research. It includes original methodologies, materials phenomena, material systems, and special keynote topics. The current volume of the journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license. The journal defines its scope as encompassing significant developments in materials science, including methodologies for studying materials and materials phenomena. It is indexed and abstracted in various databases, such as Scopus, Science Citation Index Expanded, Civil Engineering Abstracts, INSPEC, and Academic Search, among others.