将书面领域数字语法整合到端到端上下文语音识别系统中以改进数字序列的识别

Ben Haynor, Petar S. Aleksic
{"title":"将书面领域数字语法整合到端到端上下文语音识别系统中以改进数字序列的识别","authors":"Ben Haynor, Petar S. Aleksic","doi":"10.1109/ICASSP40776.2020.9054259","DOIUrl":null,"url":null,"abstract":"Accurate recognition of numeric sequences is crucial for many contextual speech recognition applications. For example, a user might create a calendar event and be prompted by a virtual assistant for the time, date, and duration of the event. We propose a modular and scalable solution for improved recognition of numeric sequences. We use finite state transducers built from written domain numeric grammars to increase the likelihood of hypotheses containing matching numeric entities during beam search in an end-to-end speech recognition system. Using our technique results in relative reduction in word error rate of up to 59% on a variety of numeric sequence recognition tasks (times, percentages, digit sequences, …).","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"20 1","pages":"7809-7813"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Incorporating Written Domain Numeric Grammars into End-To-End Contextual Speech Recognition Systems for Improved Recognition of Numeric Sequences\",\"authors\":\"Ben Haynor, Petar S. Aleksic\",\"doi\":\"10.1109/ICASSP40776.2020.9054259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate recognition of numeric sequences is crucial for many contextual speech recognition applications. For example, a user might create a calendar event and be prompted by a virtual assistant for the time, date, and duration of the event. We propose a modular and scalable solution for improved recognition of numeric sequences. We use finite state transducers built from written domain numeric grammars to increase the likelihood of hypotheses containing matching numeric entities during beam search in an end-to-end speech recognition system. Using our technique results in relative reduction in word error rate of up to 59% on a variety of numeric sequence recognition tasks (times, percentages, digit sequences, …).\",\"PeriodicalId\":13127,\"journal\":{\"name\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"20 1\",\"pages\":\"7809-7813\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP40776.2020.9054259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9054259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

准确识别数字序列是许多上下文语音识别应用的关键。例如,用户可以创建一个日历事件,然后由虚拟助手提示该事件的时间、日期和持续时间。我们提出了一个模块化和可扩展的解决方案来改进数字序列的识别。在端到端语音识别系统的波束搜索过程中,我们使用由书面领域数字语法构建的有限状态换能器来增加包含匹配数字实体的假设的可能性。使用我们的技术,在各种数字序列识别任务(时间、百分比、数字序列等)上,单词错误率相对降低了59%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incorporating Written Domain Numeric Grammars into End-To-End Contextual Speech Recognition Systems for Improved Recognition of Numeric Sequences
Accurate recognition of numeric sequences is crucial for many contextual speech recognition applications. For example, a user might create a calendar event and be prompted by a virtual assistant for the time, date, and duration of the event. We propose a modular and scalable solution for improved recognition of numeric sequences. We use finite state transducers built from written domain numeric grammars to increase the likelihood of hypotheses containing matching numeric entities during beam search in an end-to-end speech recognition system. Using our technique results in relative reduction in word error rate of up to 59% on a variety of numeric sequence recognition tasks (times, percentages, digit sequences, …).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信