双调和问题C0内罚近似的点误差估计

D. Leykekhman
{"title":"双调和问题C0内罚近似的点误差估计","authors":"D. Leykekhman","doi":"10.1090/mcom/3596","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to derive pointwise global and local best approximation type error estimates for biharmonic problem using C0 interior penalty method. The analysis uses the technique of dyadic decompositions of the domain, which assumed to be a convex polygon. The proofs require local energy estimate and new pointwise Green’s function estimates for the continuous problem which have an independent interest.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pointwise error estimates for C0 interior penalty approximation of biharmonic problems\",\"authors\":\"D. Leykekhman\",\"doi\":\"10.1090/mcom/3596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to derive pointwise global and local best approximation type error estimates for biharmonic problem using C0 interior penalty method. The analysis uses the technique of dyadic decompositions of the domain, which assumed to be a convex polygon. The proofs require local energy estimate and new pointwise Green’s function estimates for the continuous problem which have an independent interest.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文的目的是利用C0内罚方法导出双调和问题的全局和局部最佳逼近型误差估计。该分析采用了双进分解的方法,假设该域是一个凸多边形。这些证明需要对具有独立兴趣的连续问题进行局部能量估计和新的逐点格林函数估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pointwise error estimates for C0 interior penalty approximation of biharmonic problems
The aim of this paper is to derive pointwise global and local best approximation type error estimates for biharmonic problem using C0 interior penalty method. The analysis uses the technique of dyadic decompositions of the domain, which assumed to be a convex polygon. The proofs require local energy estimate and new pointwise Green’s function estimates for the continuous problem which have an independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信