基于类别感知的负抽样对比学习的领域泛化

Mengwei Xie, Suyun Zhao, Hong Chen, Cuiping Li
{"title":"基于类别感知的负抽样对比学习的领域泛化","authors":"Mengwei Xie,&nbsp;Suyun Zhao,&nbsp;Hong Chen,&nbsp;Cuiping Li","doi":"10.1016/j.aiopen.2022.11.004","DOIUrl":null,"url":null,"abstract":"<div><p>When faced with the issue of different feature distribution between training and test data, the test data may differ in style and background from the training data due to the collection sources or privacy protection. That is, the transfer generalization problem. Contrastive learning, which is currently the most successful unsupervised learning method, provides good generalization performance for the various distributions of data and can use labeled data more effectively without overfitting. This study demonstrates how contrast can enhance a model’s ability to generalize, how joint contrastive learning and supervised learning can strengthen one another, and how this approach can be broadly used in various disciplines.</p></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"3 ","pages":"Pages 200-207"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666651022000195/pdfft?md5=d1beea40105807161328cdcc4aa5b211&pid=1-s2.0-S2666651022000195-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Domain generalization by class-aware negative sampling-based contrastive learning\",\"authors\":\"Mengwei Xie,&nbsp;Suyun Zhao,&nbsp;Hong Chen,&nbsp;Cuiping Li\",\"doi\":\"10.1016/j.aiopen.2022.11.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>When faced with the issue of different feature distribution between training and test data, the test data may differ in style and background from the training data due to the collection sources or privacy protection. That is, the transfer generalization problem. Contrastive learning, which is currently the most successful unsupervised learning method, provides good generalization performance for the various distributions of data and can use labeled data more effectively without overfitting. This study demonstrates how contrast can enhance a model’s ability to generalize, how joint contrastive learning and supervised learning can strengthen one another, and how this approach can be broadly used in various disciplines.</p></div>\",\"PeriodicalId\":100068,\"journal\":{\"name\":\"AI Open\",\"volume\":\"3 \",\"pages\":\"Pages 200-207\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666651022000195/pdfft?md5=d1beea40105807161328cdcc4aa5b211&pid=1-s2.0-S2666651022000195-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666651022000195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666651022000195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当面对训练数据和测试数据特征分布不同的问题时,由于采集来源或隐私保护的原因,测试数据可能会与训练数据在风格和背景上有所不同。即传递泛化问题。对比学习是目前最成功的无监督学习方法,它对数据的各种分布具有良好的泛化性能,可以更有效地利用标记数据而不会过度拟合。本研究展示了对比如何增强模型的泛化能力,联合对比学习和监督学习如何相互加强,以及这种方法如何广泛应用于各个学科。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Domain generalization by class-aware negative sampling-based contrastive learning

When faced with the issue of different feature distribution between training and test data, the test data may differ in style and background from the training data due to the collection sources or privacy protection. That is, the transfer generalization problem. Contrastive learning, which is currently the most successful unsupervised learning method, provides good generalization performance for the various distributions of data and can use labeled data more effectively without overfitting. This study demonstrates how contrast can enhance a model’s ability to generalize, how joint contrastive learning and supervised learning can strengthen one another, and how this approach can be broadly used in various disciplines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
45.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信