H. Li, S. J. Li, Q. Xie, J. H. Liu, R. H. Bai, R. Y. Tao, X. Lun, N. Li, X. Bo, C. Liu, L. Han, B. Deng
{"title":"玄龙50号实验汤姆逊散射诊断系统。","authors":"H. Li, S. J. Li, Q. Xie, J. H. Liu, R. H. Bai, R. Y. Tao, X. Lun, N. Li, X. Bo, C. Liu, L. Han, B. Deng","doi":"10.1063/5.0088785","DOIUrl":null,"url":null,"abstract":"A 15-point Thomson scattering diagnostic system is developed for ENN's spherical torus experiment XuanLong-50 (EXL-50). A BeamTech laser with 3 J/pulse (1064 nm wavelength) at 50 Hz repetition rate is chosen for measurements during EXL-50 plasma operations. To enable measurements at low density (∼0.5 × 1018 m-3) plasma operations, the opto-mechanical subsystems are carefully designed to maximize the collection and transmission of the scattered light and to minimize the stray light level. In addition, the high bandwidth trans-impedance amplifiers and segmented high speed waveform digitizers allow for the application of muti-pulse averaging to further improve the signal-to-noise ratio. Details of the diagnostic system are described and initial experimental results are presented.","PeriodicalId":54761,"journal":{"name":"Journal of the Optical Society of America and Review of Scientific Instruments","volume":"20 1","pages":"053504"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Thomson scattering diagnostic system for the XuanLong-50 experiment.\",\"authors\":\"H. Li, S. J. Li, Q. Xie, J. H. Liu, R. H. Bai, R. Y. Tao, X. Lun, N. Li, X. Bo, C. Liu, L. Han, B. Deng\",\"doi\":\"10.1063/5.0088785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 15-point Thomson scattering diagnostic system is developed for ENN's spherical torus experiment XuanLong-50 (EXL-50). A BeamTech laser with 3 J/pulse (1064 nm wavelength) at 50 Hz repetition rate is chosen for measurements during EXL-50 plasma operations. To enable measurements at low density (∼0.5 × 1018 m-3) plasma operations, the opto-mechanical subsystems are carefully designed to maximize the collection and transmission of the scattered light and to minimize the stray light level. In addition, the high bandwidth trans-impedance amplifiers and segmented high speed waveform digitizers allow for the application of muti-pulse averaging to further improve the signal-to-noise ratio. Details of the diagnostic system are described and initial experimental results are presented.\",\"PeriodicalId\":54761,\"journal\":{\"name\":\"Journal of the Optical Society of America and Review of Scientific Instruments\",\"volume\":\"20 1\",\"pages\":\"053504\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Optical Society of America and Review of Scientific Instruments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0088785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Optical Society of America and Review of Scientific Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0088785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thomson scattering diagnostic system for the XuanLong-50 experiment.
A 15-point Thomson scattering diagnostic system is developed for ENN's spherical torus experiment XuanLong-50 (EXL-50). A BeamTech laser with 3 J/pulse (1064 nm wavelength) at 50 Hz repetition rate is chosen for measurements during EXL-50 plasma operations. To enable measurements at low density (∼0.5 × 1018 m-3) plasma operations, the opto-mechanical subsystems are carefully designed to maximize the collection and transmission of the scattered light and to minimize the stray light level. In addition, the high bandwidth trans-impedance amplifiers and segmented high speed waveform digitizers allow for the application of muti-pulse averaging to further improve the signal-to-noise ratio. Details of the diagnostic system are described and initial experimental results are presented.