北极:利用双层CRF从pdf格式的科学论文中提取元数据

Alan Souza, V. Moreira, C. Heuser
{"title":"北极:利用双层CRF从pdf格式的科学论文中提取元数据","authors":"Alan Souza, V. Moreira, C. Heuser","doi":"10.1145/2644866.2644872","DOIUrl":null,"url":null,"abstract":"Most scientific articles are available in PDF format. The PDF standard allows the generation of metadata that is included within the document. However, many authors do not define this information, making this feature unreliable or incomplete. This fact has been motivating research which aims to extract metadata automatically. Automatic metadata extraction has been identified as one of the most challenging tasks in document engineering. This work proposes Artic, a method for metadata extraction from scientific papers which employs a two-layer probabilistic framework based on Conditional Random Fields. The first layer aims at identifying the main sections with metadata information, and the second layer finds, for each section, the corresponding metadata. Given a PDF file containing a scientific paper, Artic extracts the title, author names, emails, affiliations, and venue information. We report on experiments using 100 real papers from a variety of publishers. Our results outperformed the state-of-the-art system used as the baseline, achieving a precision of over 99%.","PeriodicalId":91385,"journal":{"name":"Proceedings of the ACM Symposium on Document Engineering. ACM Symposium on Document Engineering","volume":"90 1","pages":"121-130"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"ARCTIC: metadata extraction from scientific papers in pdf using two-layer CRF\",\"authors\":\"Alan Souza, V. Moreira, C. Heuser\",\"doi\":\"10.1145/2644866.2644872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most scientific articles are available in PDF format. The PDF standard allows the generation of metadata that is included within the document. However, many authors do not define this information, making this feature unreliable or incomplete. This fact has been motivating research which aims to extract metadata automatically. Automatic metadata extraction has been identified as one of the most challenging tasks in document engineering. This work proposes Artic, a method for metadata extraction from scientific papers which employs a two-layer probabilistic framework based on Conditional Random Fields. The first layer aims at identifying the main sections with metadata information, and the second layer finds, for each section, the corresponding metadata. Given a PDF file containing a scientific paper, Artic extracts the title, author names, emails, affiliations, and venue information. We report on experiments using 100 real papers from a variety of publishers. Our results outperformed the state-of-the-art system used as the baseline, achieving a precision of over 99%.\",\"PeriodicalId\":91385,\"journal\":{\"name\":\"Proceedings of the ACM Symposium on Document Engineering. ACM Symposium on Document Engineering\",\"volume\":\"90 1\",\"pages\":\"121-130\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Symposium on Document Engineering. ACM Symposium on Document Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2644866.2644872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Document Engineering. ACM Symposium on Document Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2644866.2644872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

大多数科学文章都有PDF格式。PDF标准允许生成包含在文档中的元数据。然而,许多作者没有定义这个信息,使得这个特性不可靠或不完整。这一事实激发了旨在自动提取元数据的研究。自动元数据提取已被确定为文档工程中最具挑战性的任务之一。本文提出了一种基于条件随机场的双层概率框架的科学论文元数据提取方法——Artic。第一层的目的是用元数据信息标识主要部分,第二层为每个部分查找相应的元数据。给定一个包含科学论文的PDF文件,Artic提取标题、作者姓名、电子邮件、隶属关系和地点信息。我们使用来自不同出版商的100篇真实论文来报道实验。我们的结果优于最先进的系统作为基准,达到超过99%的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ARCTIC: metadata extraction from scientific papers in pdf using two-layer CRF
Most scientific articles are available in PDF format. The PDF standard allows the generation of metadata that is included within the document. However, many authors do not define this information, making this feature unreliable or incomplete. This fact has been motivating research which aims to extract metadata automatically. Automatic metadata extraction has been identified as one of the most challenging tasks in document engineering. This work proposes Artic, a method for metadata extraction from scientific papers which employs a two-layer probabilistic framework based on Conditional Random Fields. The first layer aims at identifying the main sections with metadata information, and the second layer finds, for each section, the corresponding metadata. Given a PDF file containing a scientific paper, Artic extracts the title, author names, emails, affiliations, and venue information. We report on experiments using 100 real papers from a variety of publishers. Our results outperformed the state-of-the-art system used as the baseline, achieving a precision of over 99%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信