解耦保守局部不连续Galerkin方法对Klein-Gordon-Schrödinger方程的最优误差估计

IF 0.3 Q4 MATHEMATICS, APPLIED
He Yang
{"title":"解耦保守局部不连续Galerkin方法对Klein-Gordon-Schrödinger方程的最优误差估计","authors":"He Yang","doi":"10.12941/JKSIAM.2020.24.039","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a decoupled local discontinuous Galerkin method for solving the Klein-Gordon-Schrödinger (KGS) equations. The KGS equations is a model of the Yukawa interaction of complex scalar nucleons and real scalar mesons. The advantage of our scheme is that the computation of the nucleon and meson field is fully decoupled, so that it is especially suitable for parallel computing. We present the conservation property of our fully discrete scheme, including the energy and Hamiltonian conservation, and establish the optimal error estimate.","PeriodicalId":41717,"journal":{"name":"Journal of the Korean Society for Industrial and Applied Mathematics","volume":"161 11 1","pages":"39-78"},"PeriodicalIF":0.3000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal error estimate of a decoupled conservative local discontinuous Galerkin method for the Klein-Gordon-Schrödinger equations\",\"authors\":\"He Yang\",\"doi\":\"10.12941/JKSIAM.2020.24.039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a decoupled local discontinuous Galerkin method for solving the Klein-Gordon-Schrödinger (KGS) equations. The KGS equations is a model of the Yukawa interaction of complex scalar nucleons and real scalar mesons. The advantage of our scheme is that the computation of the nucleon and meson field is fully decoupled, so that it is especially suitable for parallel computing. We present the conservation property of our fully discrete scheme, including the energy and Hamiltonian conservation, and establish the optimal error estimate.\",\"PeriodicalId\":41717,\"journal\":{\"name\":\"Journal of the Korean Society for Industrial and Applied Mathematics\",\"volume\":\"161 11 1\",\"pages\":\"39-78\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Society for Industrial and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12941/JKSIAM.2020.24.039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Industrial and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12941/JKSIAM.2020.24.039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

本文提出求解Klein-Gordon-Schrödinger (KGS)方程的解耦局部不连续伽辽金方法。KGS方程是复标量核子与实标量介子的汤川相互作用模型。该方案的优点是核子和介子场的计算是完全解耦的,因此特别适合并行计算。给出了全离散格式的守恒性质,包括能量守恒和哈密顿守恒,并建立了最优误差估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal error estimate of a decoupled conservative local discontinuous Galerkin method for the Klein-Gordon-Schrödinger equations
In this paper, we propose a decoupled local discontinuous Galerkin method for solving the Klein-Gordon-Schrödinger (KGS) equations. The KGS equations is a model of the Yukawa interaction of complex scalar nucleons and real scalar mesons. The advantage of our scheme is that the computation of the nucleon and meson field is fully decoupled, so that it is especially suitable for parallel computing. We present the conservation property of our fully discrete scheme, including the energy and Hamiltonian conservation, and establish the optimal error estimate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信