I. Labunets, Talanov Sa, Vasilyev Rg, A. Rodnichenko, N. Utko, Kyzminova Ia, Kopjak Bs, Podjachenko Ev, V. Sagach, G. Butenko
{"title":"[帕金森大鼠胸腺激素、抗氧化酶和嗅球神经发生:褪黑素的影响]。","authors":"I. Labunets, Talanov Sa, Vasilyev Rg, A. Rodnichenko, N. Utko, Kyzminova Ia, Kopjak Bs, Podjachenko Ev, V. Sagach, G. Butenko","doi":"10.15407/FZ61.05.035","DOIUrl":null,"url":null,"abstract":"The adult rats received both neurotoxin 6-hidroxidophamine and neurotoxin and melatonin. It was investigated a link between the disturbances of the brain antioxidant enzymes activity and thymic endocrine function, as possible pathogenic factors of parkinsonism, with changes in the number of neural stem cells (NSC) in the bulbus olfactorius. Rats with motor asymmetry in the apomorphine test and significant damage of the dopaminergic neurons in the-substantia nigra have decreased levels of superoxide dismutase, catalase and glutathione peroxidase activities in striatum (1.3-1.4 times) and blood thymulin content (8 times) compared to control group. On the contrary, examined indices were not changed in rats without motor asymmetry and correspondingly partly damaged neurons. The number of nestin(+)-cells in the bulbus olfactorius of rats without motor asymmetry increased from 91.2% to 99.3% and remained unchanged after melatonin administration course (10 mg/kg during 18 days). Melatonin administration resulted in the decrease in the number of nestin(+)-cells along with significant elevation of the decreased antioxidant enzymes activity and blood thymulin content in rats with circulatory movements. Possibilities of the enhancement of NSC differentiation in bulbus olfactorius into neuronal direction in such animals has been discussed. The conclusion about the potential use of melatonin as a neuroprotector in parkinsonism therapy has been made.","PeriodicalId":12306,"journal":{"name":"Fiziolohichnyi zhurnal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"[THYMIC HORMONES, ANTIOXIDANT ENZYMES AND NEUROGENESIS OF BULBUS OLFACTORIUS IN RATS WITH PARKINSONISM: THE EFFECT OF MELATONIN].\",\"authors\":\"I. Labunets, Talanov Sa, Vasilyev Rg, A. Rodnichenko, N. Utko, Kyzminova Ia, Kopjak Bs, Podjachenko Ev, V. Sagach, G. Butenko\",\"doi\":\"10.15407/FZ61.05.035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The adult rats received both neurotoxin 6-hidroxidophamine and neurotoxin and melatonin. It was investigated a link between the disturbances of the brain antioxidant enzymes activity and thymic endocrine function, as possible pathogenic factors of parkinsonism, with changes in the number of neural stem cells (NSC) in the bulbus olfactorius. Rats with motor asymmetry in the apomorphine test and significant damage of the dopaminergic neurons in the-substantia nigra have decreased levels of superoxide dismutase, catalase and glutathione peroxidase activities in striatum (1.3-1.4 times) and blood thymulin content (8 times) compared to control group. On the contrary, examined indices were not changed in rats without motor asymmetry and correspondingly partly damaged neurons. The number of nestin(+)-cells in the bulbus olfactorius of rats without motor asymmetry increased from 91.2% to 99.3% and remained unchanged after melatonin administration course (10 mg/kg during 18 days). Melatonin administration resulted in the decrease in the number of nestin(+)-cells along with significant elevation of the decreased antioxidant enzymes activity and blood thymulin content in rats with circulatory movements. Possibilities of the enhancement of NSC differentiation in bulbus olfactorius into neuronal direction in such animals has been discussed. The conclusion about the potential use of melatonin as a neuroprotector in parkinsonism therapy has been made.\",\"PeriodicalId\":12306,\"journal\":{\"name\":\"Fiziolohichnyi zhurnal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fiziolohichnyi zhurnal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/FZ61.05.035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fiziolohichnyi zhurnal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/FZ61.05.035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[THYMIC HORMONES, ANTIOXIDANT ENZYMES AND NEUROGENESIS OF BULBUS OLFACTORIUS IN RATS WITH PARKINSONISM: THE EFFECT OF MELATONIN].
The adult rats received both neurotoxin 6-hidroxidophamine and neurotoxin and melatonin. It was investigated a link between the disturbances of the brain antioxidant enzymes activity and thymic endocrine function, as possible pathogenic factors of parkinsonism, with changes in the number of neural stem cells (NSC) in the bulbus olfactorius. Rats with motor asymmetry in the apomorphine test and significant damage of the dopaminergic neurons in the-substantia nigra have decreased levels of superoxide dismutase, catalase and glutathione peroxidase activities in striatum (1.3-1.4 times) and blood thymulin content (8 times) compared to control group. On the contrary, examined indices were not changed in rats without motor asymmetry and correspondingly partly damaged neurons. The number of nestin(+)-cells in the bulbus olfactorius of rats without motor asymmetry increased from 91.2% to 99.3% and remained unchanged after melatonin administration course (10 mg/kg during 18 days). Melatonin administration resulted in the decrease in the number of nestin(+)-cells along with significant elevation of the decreased antioxidant enzymes activity and blood thymulin content in rats with circulatory movements. Possibilities of the enhancement of NSC differentiation in bulbus olfactorius into neuronal direction in such animals has been discussed. The conclusion about the potential use of melatonin as a neuroprotector in parkinsonism therapy has been made.