{"title":"代数规则的卵石游戏","authors":"A. Dawar, Bjarki Holm","doi":"10.3233/FI-2017-1471","DOIUrl":null,"url":null,"abstract":"We define a general framework of partition games for formulating two-player pebble games over finite structures. We show that one particular such game, which we call the invertible-map game, yields a family of polynomial-time approximations of graph isomorphism that is strictly stronger than the well-known Weisfeiler-Lehman method. The general framework we introduce includes as special cases the pebble games for finite-variable logics with and without counting. It also includes a matrix-equivalence game, introduced here, which characterises equivalence in the finite-variable fragments of matrix-rank logic. We show that the equivalence defined by the invertible-map game is a refinement of the equivalence defined by each of these three other games.","PeriodicalId":56310,"journal":{"name":"Fundamenta Informaticae","volume":"70 1","pages":"251-262"},"PeriodicalIF":0.4000,"publicationDate":"2012-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Pebble Games with Algebraic Rules\",\"authors\":\"A. Dawar, Bjarki Holm\",\"doi\":\"10.3233/FI-2017-1471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define a general framework of partition games for formulating two-player pebble games over finite structures. We show that one particular such game, which we call the invertible-map game, yields a family of polynomial-time approximations of graph isomorphism that is strictly stronger than the well-known Weisfeiler-Lehman method. The general framework we introduce includes as special cases the pebble games for finite-variable logics with and without counting. It also includes a matrix-equivalence game, introduced here, which characterises equivalence in the finite-variable fragments of matrix-rank logic. We show that the equivalence defined by the invertible-map game is a refinement of the equivalence defined by each of these three other games.\",\"PeriodicalId\":56310,\"journal\":{\"name\":\"Fundamenta Informaticae\",\"volume\":\"70 1\",\"pages\":\"251-262\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2012-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamenta Informaticae\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/FI-2017-1471\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamenta Informaticae","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/FI-2017-1471","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
We define a general framework of partition games for formulating two-player pebble games over finite structures. We show that one particular such game, which we call the invertible-map game, yields a family of polynomial-time approximations of graph isomorphism that is strictly stronger than the well-known Weisfeiler-Lehman method. The general framework we introduce includes as special cases the pebble games for finite-variable logics with and without counting. It also includes a matrix-equivalence game, introduced here, which characterises equivalence in the finite-variable fragments of matrix-rank logic. We show that the equivalence defined by the invertible-map game is a refinement of the equivalence defined by each of these three other games.
期刊介绍:
Fundamenta Informaticae is an international journal publishing original research results in all areas of theoretical computer science. Papers are encouraged contributing:
solutions by mathematical methods of problems emerging in computer science
solutions of mathematical problems inspired by computer science.
Topics of interest include (but are not restricted to):
theory of computing,
complexity theory,
algorithms and data structures,
computational aspects of combinatorics and graph theory,
programming language theory,
theoretical aspects of programming languages,
computer-aided verification,
computer science logic,
database theory,
logic programming,
automated deduction,
formal languages and automata theory,
concurrency and distributed computing,
cryptography and security,
theoretical issues in artificial intelligence,
machine learning,
pattern recognition,
algorithmic game theory,
bioinformatics and computational biology,
quantum computing,
probabilistic methods,
algebraic and categorical methods.