$ \ mathcal {T} -semiring对美元

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, CYBERNETICS
Jaiung Jun, Kalina Mincheva, L. Rowen
{"title":"$ \\ mathcal {T} -semiring对美元","authors":"Jaiung Jun, Kalina Mincheva, L. Rowen","doi":"10.14736/kyb-2022-5-0733","DOIUrl":null,"url":null,"abstract":"We develop a general axiomatic theory of algebraic pairs, which simultaneously generalizes several algebraic structures, in order to bypass negation as much as feasible. We investigate several classical theorems and notions in this setting including fractions, integral extensions, and Hilbert's Nullstellensatz. Finally, we study a notion of growth in this context.","PeriodicalId":49928,"journal":{"name":"Kybernetika","volume":"87 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$\\\\mathcal{T}$-semiring pairs\",\"authors\":\"Jaiung Jun, Kalina Mincheva, L. Rowen\",\"doi\":\"10.14736/kyb-2022-5-0733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a general axiomatic theory of algebraic pairs, which simultaneously generalizes several algebraic structures, in order to bypass negation as much as feasible. We investigate several classical theorems and notions in this setting including fractions, integral extensions, and Hilbert's Nullstellensatz. Finally, we study a notion of growth in this context.\",\"PeriodicalId\":49928,\"journal\":{\"name\":\"Kybernetika\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kybernetika\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.14736/kyb-2022-5-0733\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kybernetika","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14736/kyb-2022-5-0733","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

摘要

我们发展了代数对的一般公理化理论,它同时推广了几种代数结构,以便尽可能地绕过否定。我们研究了几个经典的定理和概念,包括分数,积分扩展,和希尔伯特的零定理。最后,我们在此背景下研究了增长的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$\mathcal{T}$-semiring pairs
We develop a general axiomatic theory of algebraic pairs, which simultaneously generalizes several algebraic structures, in order to bypass negation as much as feasible. We investigate several classical theorems and notions in this setting including fractions, integral extensions, and Hilbert's Nullstellensatz. Finally, we study a notion of growth in this context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Kybernetika
Kybernetika 工程技术-计算机:控制论
CiteScore
1.30
自引率
20.00%
发文量
38
审稿时长
6 months
期刊介绍: Kybernetika is the bi-monthly international journal dedicated for rapid publication of high-quality, peer-reviewed research articles in fields covered by its title. The journal is published by Nakladatelství Academia, Centre of Administration and Operations of the Czech Academy of Sciences for the Institute of Information Theory and Automation of The Czech Academy of Sciences. Kybernetika traditionally publishes research results in the fields of Control Sciences, Information Sciences, Statistical Decision Making, Applied Probability Theory, Random Processes, Operations Research, Fuzziness and Uncertainty Theories, as well as in the topics closely related to the above fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信