{"title":"基于深度学习和迁移学习的运动模糊cct识别","authors":"Yun Shi, Yanyan Zhu","doi":"10.4114/INTARTIF.VOL23ISS66PP1-8","DOIUrl":null,"url":null,"abstract":"Considering the need for a large number of samples and the long training time, this paper uses deep and transfer learning to identify motion-blurred Chinese character coded targets (CCTs). Firstly, a set of CCTs are designed, and the motion blur image generation system is used to provide samples for the recognition network. Secondly, the OTSU algorithm, the expansion, and the Canny operator are performed on the real shot blurred image, where the target area is segmented by the minimum bounding box. Thirdly, the sample is selected from the sample set according to the 4:1 ratio as the training set and the test set. Under the Tensor Flow framework, the convolutional layer in the AlexNet model is fixed, and the fully-connected layer is trained for transfer learning. Finally, experiments on simulated and real-time motion-blurred images are carried out. The results show that network training and testing only take 30 minutes and two seconds, and the recognition accuracy reaches 98.6% and 93.58%, respectively. As a result, our method has higher recognition accuracy, does not require a large number of trained samples, takes less time, and can provide a certain reference for the recognition of motion-blurred CCTs.","PeriodicalId":43470,"journal":{"name":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recognition of Motion-blurred CCTs based on Deep and Transfer Learning\",\"authors\":\"Yun Shi, Yanyan Zhu\",\"doi\":\"10.4114/INTARTIF.VOL23ISS66PP1-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considering the need for a large number of samples and the long training time, this paper uses deep and transfer learning to identify motion-blurred Chinese character coded targets (CCTs). Firstly, a set of CCTs are designed, and the motion blur image generation system is used to provide samples for the recognition network. Secondly, the OTSU algorithm, the expansion, and the Canny operator are performed on the real shot blurred image, where the target area is segmented by the minimum bounding box. Thirdly, the sample is selected from the sample set according to the 4:1 ratio as the training set and the test set. Under the Tensor Flow framework, the convolutional layer in the AlexNet model is fixed, and the fully-connected layer is trained for transfer learning. Finally, experiments on simulated and real-time motion-blurred images are carried out. The results show that network training and testing only take 30 minutes and two seconds, and the recognition accuracy reaches 98.6% and 93.58%, respectively. As a result, our method has higher recognition accuracy, does not require a large number of trained samples, takes less time, and can provide a certain reference for the recognition of motion-blurred CCTs.\",\"PeriodicalId\":43470,\"journal\":{\"name\":\"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4114/INTARTIF.VOL23ISS66PP1-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4114/INTARTIF.VOL23ISS66PP1-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Recognition of Motion-blurred CCTs based on Deep and Transfer Learning
Considering the need for a large number of samples and the long training time, this paper uses deep and transfer learning to identify motion-blurred Chinese character coded targets (CCTs). Firstly, a set of CCTs are designed, and the motion blur image generation system is used to provide samples for the recognition network. Secondly, the OTSU algorithm, the expansion, and the Canny operator are performed on the real shot blurred image, where the target area is segmented by the minimum bounding box. Thirdly, the sample is selected from the sample set according to the 4:1 ratio as the training set and the test set. Under the Tensor Flow framework, the convolutional layer in the AlexNet model is fixed, and the fully-connected layer is trained for transfer learning. Finally, experiments on simulated and real-time motion-blurred images are carried out. The results show that network training and testing only take 30 minutes and two seconds, and the recognition accuracy reaches 98.6% and 93.58%, respectively. As a result, our method has higher recognition accuracy, does not require a large number of trained samples, takes less time, and can provide a certain reference for the recognition of motion-blurred CCTs.
期刊介绍:
Inteligencia Artificial is a quarterly journal promoted and sponsored by the Spanish Association for Artificial Intelligence. The journal publishes high-quality original research papers reporting theoretical or applied advances in all branches of Artificial Intelligence. The journal publishes high-quality original research papers reporting theoretical or applied advances in all branches of Artificial Intelligence. Particularly, the Journal welcomes: New approaches, techniques or methods to solve AI problems, which should include demonstrations of effectiveness oor improvement over existing methods. These demonstrations must be reproducible. Integration of different technologies or approaches to solve wide problems or belonging different areas. AI applications, which should describe in detail the problem or the scenario and the proposed solution, emphasizing its novelty and present a evaluation of the AI techniques that are applied. In addition to rapid publication and dissemination of unsolicited contributions, the journal is also committed to producing monographs, surveys or special issues on topics, methods or techniques of special relevance to the AI community. Inteligencia Artificial welcomes submissions written in English, Spaninsh or Portuguese. But at least, a title, summary and keywords in english should be included in each contribution.