利用Goce卫星重力数据与Sgg-Ugm-2数据进行苏门答腊岛地质构造探测的比较

Al Shida Natul, L. Heliani
{"title":"利用Goce卫星重力数据与Sgg-Ugm-2数据进行苏门答腊岛地质构造探测的比较","authors":"Al Shida Natul, L. Heliani","doi":"10.25299/jgeet.2022.7.3.8863","DOIUrl":null,"url":null,"abstract":"GOCE gravity satellite data can be used for regional fault detection because the observation area is wide and not limited by area. In this study, GOCE satellite data is used to detect geological structures on the island of Sumatra, the results of which are used as the basis for disaster mitigation. GOCE data and SGG-UGM-2 were processed using the GOCE User Toolbox (GUT) software to produce a gravity disturbance map and a complete bouguer anomaly map. The GOCE obtained results were validated using the SGG-UGM-2 high-resolution gravity model data. The calculation results obtained that the gravity disturbance value from the GOCE data was around -140 to 200 mGal, while the value of the gravity disturbance from the SGG-UGM-2 data was around -180-300 mGal. The GOCE gravity disturbance map and the SGG-UGM-2 can detect the Subduction Trench, Mentawai Fault, and West Andaman Fault on Sumatra Island with negative values, while the Sumatran Fault Zone (SFZ) along Sumatra Island with positive values ​​in line with the presence of mountain ranges. The results of the SGG-UGM-2 data processing for the gravity disturbance are more detailed than GOCE because the SGG-UGM-2 data degree is higher than that of GOCE. GOCE complete bouguer anomaly value is around 40-560 mGal, while the value of complete bouguer anomaly SGG-UGM-2 is around 60-560 mGal. The complete bouguer anomaly maps from GOCE and SGG-UGM-2 can detect patterns from the Subduction Trench, Mentawai Fault, and West Andaman Fault but cannot clearly detect SFZ. The complete bouguer anomaly can also detect differences between oceanic and continental crust. The GOCE and the SGG-UGM-2 complete bouguer anomaly map show almost similar patterns and the ability to detect geological structures for sub and regional Sumatra Island. In addition, GOCE data detect geological structures more clearly than GRACE data.","PeriodicalId":31931,"journal":{"name":"JGEET Journal of Geoscience Engineering Environment and Technology","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparison of Geologic Structure Detection of Sumatera Island Using Goce Satellite Gravity Data and Sgg-Ugm-2 Data\",\"authors\":\"Al Shida Natul, L. Heliani\",\"doi\":\"10.25299/jgeet.2022.7.3.8863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GOCE gravity satellite data can be used for regional fault detection because the observation area is wide and not limited by area. In this study, GOCE satellite data is used to detect geological structures on the island of Sumatra, the results of which are used as the basis for disaster mitigation. GOCE data and SGG-UGM-2 were processed using the GOCE User Toolbox (GUT) software to produce a gravity disturbance map and a complete bouguer anomaly map. The GOCE obtained results were validated using the SGG-UGM-2 high-resolution gravity model data. The calculation results obtained that the gravity disturbance value from the GOCE data was around -140 to 200 mGal, while the value of the gravity disturbance from the SGG-UGM-2 data was around -180-300 mGal. The GOCE gravity disturbance map and the SGG-UGM-2 can detect the Subduction Trench, Mentawai Fault, and West Andaman Fault on Sumatra Island with negative values, while the Sumatran Fault Zone (SFZ) along Sumatra Island with positive values ​​in line with the presence of mountain ranges. The results of the SGG-UGM-2 data processing for the gravity disturbance are more detailed than GOCE because the SGG-UGM-2 data degree is higher than that of GOCE. GOCE complete bouguer anomaly value is around 40-560 mGal, while the value of complete bouguer anomaly SGG-UGM-2 is around 60-560 mGal. The complete bouguer anomaly maps from GOCE and SGG-UGM-2 can detect patterns from the Subduction Trench, Mentawai Fault, and West Andaman Fault but cannot clearly detect SFZ. The complete bouguer anomaly can also detect differences between oceanic and continental crust. The GOCE and the SGG-UGM-2 complete bouguer anomaly map show almost similar patterns and the ability to detect geological structures for sub and regional Sumatra Island. In addition, GOCE data detect geological structures more clearly than GRACE data.\",\"PeriodicalId\":31931,\"journal\":{\"name\":\"JGEET Journal of Geoscience Engineering Environment and Technology\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JGEET Journal of Geoscience Engineering Environment and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25299/jgeet.2022.7.3.8863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JGEET Journal of Geoscience Engineering Environment and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25299/jgeet.2022.7.3.8863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

GOCE重力卫星数据由于观测范围广,不受区域限制,可以用于区域故障检测。在本研究中,GOCE卫星数据被用于探测苏门答腊岛的地质结构,其结果被用作减灾的基础。利用GOCE用户工具箱(GUT)软件对GOCE数据和SGG-UGM-2进行处理,生成重力扰动图和完整的布格异常图。利用SGG-UGM-2高分辨率重力模型数据验证了GOCE所得结果。计算结果表明,GOCE数据的重力扰动值在-140 ~ 200 mGal左右,SGG-UGM-2数据的重力扰动值在-180 ~ 300 mGal左右。GOCE重力扰动图和SGG-UGM-2可以探测到苏门答腊岛上的俯冲沟、明打威断裂和西安达曼断裂为负值,而沿苏门答腊岛的苏门答腊断裂带(SFZ)为正值,符合山脉的存在。由于SGG-UGM-2的数据程度高于GOCE,因此SGG-UGM-2对重力扰动的处理结果比GOCE更详细。GOCE完全布格异常值约为40-560 mGal, SGG-UGM-2完全布格异常值约为60-560 mGal。GOCE和SGG-UGM-2的完整的bouger异常图可以探测到俯冲沟、明打威断裂和西安达曼断裂的模式,但不能清楚地探测到SFZ。完整的布格异常还可以探测洋壳和陆壳之间的差异。GOCE与SGG-UGM-2完整的bouger异常图显示出几乎相似的模式和探测苏门答腊岛亚区域地质构造的能力。此外,GOCE数据对地质构造的探测比GRACE数据更清晰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparison of Geologic Structure Detection of Sumatera Island Using Goce Satellite Gravity Data and Sgg-Ugm-2 Data
GOCE gravity satellite data can be used for regional fault detection because the observation area is wide and not limited by area. In this study, GOCE satellite data is used to detect geological structures on the island of Sumatra, the results of which are used as the basis for disaster mitigation. GOCE data and SGG-UGM-2 were processed using the GOCE User Toolbox (GUT) software to produce a gravity disturbance map and a complete bouguer anomaly map. The GOCE obtained results were validated using the SGG-UGM-2 high-resolution gravity model data. The calculation results obtained that the gravity disturbance value from the GOCE data was around -140 to 200 mGal, while the value of the gravity disturbance from the SGG-UGM-2 data was around -180-300 mGal. The GOCE gravity disturbance map and the SGG-UGM-2 can detect the Subduction Trench, Mentawai Fault, and West Andaman Fault on Sumatra Island with negative values, while the Sumatran Fault Zone (SFZ) along Sumatra Island with positive values ​​in line with the presence of mountain ranges. The results of the SGG-UGM-2 data processing for the gravity disturbance are more detailed than GOCE because the SGG-UGM-2 data degree is higher than that of GOCE. GOCE complete bouguer anomaly value is around 40-560 mGal, while the value of complete bouguer anomaly SGG-UGM-2 is around 60-560 mGal. The complete bouguer anomaly maps from GOCE and SGG-UGM-2 can detect patterns from the Subduction Trench, Mentawai Fault, and West Andaman Fault but cannot clearly detect SFZ. The complete bouguer anomaly can also detect differences between oceanic and continental crust. The GOCE and the SGG-UGM-2 complete bouguer anomaly map show almost similar patterns and the ability to detect geological structures for sub and regional Sumatra Island. In addition, GOCE data detect geological structures more clearly than GRACE data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
6
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信