Venu Rao, T. Sriskandarajah, Carlos Charnaux, Alan Roy, P. Ragupathy, S. Eyssautier
{"title":"残余曲率法减轻HPHT PIP系统侧向屈曲的实例研究","authors":"Venu Rao, T. Sriskandarajah, Carlos Charnaux, Alan Roy, P. Ragupathy, S. Eyssautier","doi":"10.4043/29603-MS","DOIUrl":null,"url":null,"abstract":"\n Lateral buckling mitigation design for HPHT pipe-in-pipe system is technically challenging and at times the reliability of proven buckling mitigation options may come into severe technical scrutiny for some HPHT pipe in pipe systems on the undulating seabed. The Residual Curvature Method (RCM) presents as an alternative technical option for such cases. The technique comprises understraightening in intermittent sections of the ‘as-laid’ pipeline which form ‘expansion loops’ and provide a proven, reliable and cost-effective buckling mitigation. The method was successfully implemented in Statoil’s Skuld project in 2012 and subsequently a few other projects worldwide which are all single pipeline systems. However, the RC method was not used as a buckling mitigation method for a pipe in pipe system to date to the knowledge of the authors.\n Residual curvature method could be proven superior for HPHT Pipe-in-Pipe Systems to other lateral buckling methods (thanks to controlled well-developed buckles at pre-determined locations) under some favourable design conditions. This paper shows the robustness of the technique for a typical 12\" / 16\" HPHT pipe in pipe system with an operating pressure of 300barg and 150°C operating in a maximum water depth of 2000m as a case study. The PIP system is considered to be laid by a reel-lay method, which is amenable to inducing the residual curvature at the pre-determined RC locations during pipelay process.\n The study includes the special considerations required in deploying the method on an undulating seabed taking into account unplanned buckles or spans and the necessary adjustment to be made to pre-determined buckle sites. The study includes the effects of inner pipe snaking (with residual curvature) within a near straight outer pipe due to the reeling process and its impact on the lateral buckling behaviour. Other design features that may have a significant effect on the RC method are discussed.","PeriodicalId":10968,"journal":{"name":"Day 3 Wed, May 08, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Residual Curvature Method of Mitigating Lateral Buckling for HPHT PIP System – A case study\",\"authors\":\"Venu Rao, T. Sriskandarajah, Carlos Charnaux, Alan Roy, P. Ragupathy, S. Eyssautier\",\"doi\":\"10.4043/29603-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Lateral buckling mitigation design for HPHT pipe-in-pipe system is technically challenging and at times the reliability of proven buckling mitigation options may come into severe technical scrutiny for some HPHT pipe in pipe systems on the undulating seabed. The Residual Curvature Method (RCM) presents as an alternative technical option for such cases. The technique comprises understraightening in intermittent sections of the ‘as-laid’ pipeline which form ‘expansion loops’ and provide a proven, reliable and cost-effective buckling mitigation. The method was successfully implemented in Statoil’s Skuld project in 2012 and subsequently a few other projects worldwide which are all single pipeline systems. However, the RC method was not used as a buckling mitigation method for a pipe in pipe system to date to the knowledge of the authors.\\n Residual curvature method could be proven superior for HPHT Pipe-in-Pipe Systems to other lateral buckling methods (thanks to controlled well-developed buckles at pre-determined locations) under some favourable design conditions. This paper shows the robustness of the technique for a typical 12\\\" / 16\\\" HPHT pipe in pipe system with an operating pressure of 300barg and 150°C operating in a maximum water depth of 2000m as a case study. The PIP system is considered to be laid by a reel-lay method, which is amenable to inducing the residual curvature at the pre-determined RC locations during pipelay process.\\n The study includes the special considerations required in deploying the method on an undulating seabed taking into account unplanned buckles or spans and the necessary adjustment to be made to pre-determined buckle sites. The study includes the effects of inner pipe snaking (with residual curvature) within a near straight outer pipe due to the reeling process and its impact on the lateral buckling behaviour. Other design features that may have a significant effect on the RC method are discussed.\",\"PeriodicalId\":10968,\"journal\":{\"name\":\"Day 3 Wed, May 08, 2019\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Wed, May 08, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4043/29603-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, May 08, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/29603-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Residual Curvature Method of Mitigating Lateral Buckling for HPHT PIP System – A case study
Lateral buckling mitigation design for HPHT pipe-in-pipe system is technically challenging and at times the reliability of proven buckling mitigation options may come into severe technical scrutiny for some HPHT pipe in pipe systems on the undulating seabed. The Residual Curvature Method (RCM) presents as an alternative technical option for such cases. The technique comprises understraightening in intermittent sections of the ‘as-laid’ pipeline which form ‘expansion loops’ and provide a proven, reliable and cost-effective buckling mitigation. The method was successfully implemented in Statoil’s Skuld project in 2012 and subsequently a few other projects worldwide which are all single pipeline systems. However, the RC method was not used as a buckling mitigation method for a pipe in pipe system to date to the knowledge of the authors.
Residual curvature method could be proven superior for HPHT Pipe-in-Pipe Systems to other lateral buckling methods (thanks to controlled well-developed buckles at pre-determined locations) under some favourable design conditions. This paper shows the robustness of the technique for a typical 12" / 16" HPHT pipe in pipe system with an operating pressure of 300barg and 150°C operating in a maximum water depth of 2000m as a case study. The PIP system is considered to be laid by a reel-lay method, which is amenable to inducing the residual curvature at the pre-determined RC locations during pipelay process.
The study includes the special considerations required in deploying the method on an undulating seabed taking into account unplanned buckles or spans and the necessary adjustment to be made to pre-determined buckle sites. The study includes the effects of inner pipe snaking (with residual curvature) within a near straight outer pipe due to the reeling process and its impact on the lateral buckling behaviour. Other design features that may have a significant effect on the RC method are discussed.