面向会话搜索的信息寻求对话混合主动性的大规模分析

Svitlana Vakulenko, E. Kanoulas, M. de Rijke
{"title":"面向会话搜索的信息寻求对话混合主动性的大规模分析","authors":"Svitlana Vakulenko, E. Kanoulas, M. de Rijke","doi":"10.1145/3466796","DOIUrl":null,"url":null,"abstract":"Conversational search is a relatively young area of research that aims at automating an information-seeking dialogue. In this article, we help to position it with respect to other research areas within conversational artificial intelligence (AI) by analysing the structural properties of an information-seeking dialogue. To this end, we perform a large-scale dialogue analysis of more than 150K transcripts from 16 publicly available dialogue datasets. These datasets were collected to inform different dialogue-based tasks including conversational search. We extract different patterns of mixed initiative from these dialogue transcripts and use them to compare dialogues of different types. Moreover, we contrast the patterns found in information-seeking dialogues that are being used for research purposes with the patterns found in virtual reference interviews that were conducted by professional librarians. The insights we provide (1) establish close relations between conversational search and other conversational AI tasks and (2) uncover limitations of existing conversational datasets to inform future data collection tasks.","PeriodicalId":6934,"journal":{"name":"ACM Transactions on Information Systems (TOIS)","volume":"26 1","pages":"1 - 32"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"A Large-scale Analysis of Mixed Initiative in Information-Seeking Dialogues for Conversational Search\",\"authors\":\"Svitlana Vakulenko, E. Kanoulas, M. de Rijke\",\"doi\":\"10.1145/3466796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conversational search is a relatively young area of research that aims at automating an information-seeking dialogue. In this article, we help to position it with respect to other research areas within conversational artificial intelligence (AI) by analysing the structural properties of an information-seeking dialogue. To this end, we perform a large-scale dialogue analysis of more than 150K transcripts from 16 publicly available dialogue datasets. These datasets were collected to inform different dialogue-based tasks including conversational search. We extract different patterns of mixed initiative from these dialogue transcripts and use them to compare dialogues of different types. Moreover, we contrast the patterns found in information-seeking dialogues that are being used for research purposes with the patterns found in virtual reference interviews that were conducted by professional librarians. The insights we provide (1) establish close relations between conversational search and other conversational AI tasks and (2) uncover limitations of existing conversational datasets to inform future data collection tasks.\",\"PeriodicalId\":6934,\"journal\":{\"name\":\"ACM Transactions on Information Systems (TOIS)\",\"volume\":\"26 1\",\"pages\":\"1 - 32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information Systems (TOIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3466796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems (TOIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3466796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

会话搜索是一个相对年轻的研究领域,旨在实现信息搜索对话的自动化。在本文中,我们通过分析信息寻求对话的结构属性,帮助将其定位于会话人工智能(AI)中的其他研究领域。为此,我们对来自16个公开可用的对话数据集的超过150K个文本进行了大规模的对话分析。收集这些数据集是为了通知不同的基于对话的任务,包括对话搜索。我们从这些对话文本中提取不同的混合主动性模式,并用它们来比较不同类型的对话。此外,我们将用于研究目的的信息寻求对话中的模式与由专业图书馆员进行的虚拟参考访谈中的模式进行了对比。我们提供的见解(1)在会话搜索和其他会话AI任务之间建立密切关系;(2)揭示现有会话数据集的局限性,为未来的数据收集任务提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Large-scale Analysis of Mixed Initiative in Information-Seeking Dialogues for Conversational Search
Conversational search is a relatively young area of research that aims at automating an information-seeking dialogue. In this article, we help to position it with respect to other research areas within conversational artificial intelligence (AI) by analysing the structural properties of an information-seeking dialogue. To this end, we perform a large-scale dialogue analysis of more than 150K transcripts from 16 publicly available dialogue datasets. These datasets were collected to inform different dialogue-based tasks including conversational search. We extract different patterns of mixed initiative from these dialogue transcripts and use them to compare dialogues of different types. Moreover, we contrast the patterns found in information-seeking dialogues that are being used for research purposes with the patterns found in virtual reference interviews that were conducted by professional librarians. The insights we provide (1) establish close relations between conversational search and other conversational AI tasks and (2) uncover limitations of existing conversational datasets to inform future data collection tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信