关于双调和波映射的Cauchy问题的全局结果

Tobias Schmid
{"title":"关于双调和波映射的Cauchy问题的全局结果","authors":"Tobias Schmid","doi":"10.5445/IR/1000130150","DOIUrl":null,"url":null,"abstract":"We prove global existence of a derivative bi-harmonic wave equation with a non-generic quadratic nonlinearity and small initial data in the scaling critical space $$\\dot{B}^{2,1}_{\\frac{d}{2}}(\\mathbb{R}^d) \\times \\dot{B}^{2,1}_{\\frac{d}{2}-2}(\\mathbb{R}^d)$$ for $ d \\geq 3 $. Since the solution persists higher regularity of the initial data, we obtain a small data global regularity result for the biharmonic wave maps equation for a certain class of target manifolds including the sphere.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Global results for a Cauchy problem related to biharmonic wave maps\",\"authors\":\"Tobias Schmid\",\"doi\":\"10.5445/IR/1000130150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove global existence of a derivative bi-harmonic wave equation with a non-generic quadratic nonlinearity and small initial data in the scaling critical space $$\\\\dot{B}^{2,1}_{\\\\frac{d}{2}}(\\\\mathbb{R}^d) \\\\times \\\\dot{B}^{2,1}_{\\\\frac{d}{2}-2}(\\\\mathbb{R}^d)$$ for $ d \\\\geq 3 $. Since the solution persists higher regularity of the initial data, we obtain a small data global regularity result for the biharmonic wave maps equation for a certain class of target manifolds including the sphere.\",\"PeriodicalId\":8445,\"journal\":{\"name\":\"arXiv: Analysis of PDEs\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5445/IR/1000130150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5445/IR/1000130150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们证明了$ d \geq 3 $在标度临界空间$$\dot{B}^{2,1}_{\frac{d}{2}}(\mathbb{R}^d) \times \dot{B}^{2,1}_{\frac{d}{2}-2}(\mathbb{R}^d)$$上具有非一般二次非线性和小初始数据的导数双谐波方程的整体存在性。由于解具有较高的初始数据正则性,我们得到了一类目标流形(包括球面)双调和波映射方程的小数据全局正则性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global results for a Cauchy problem related to biharmonic wave maps
We prove global existence of a derivative bi-harmonic wave equation with a non-generic quadratic nonlinearity and small initial data in the scaling critical space $$\dot{B}^{2,1}_{\frac{d}{2}}(\mathbb{R}^d) \times \dot{B}^{2,1}_{\frac{d}{2}-2}(\mathbb{R}^d)$$ for $ d \geq 3 $. Since the solution persists higher regularity of the initial data, we obtain a small data global regularity result for the biharmonic wave maps equation for a certain class of target manifolds including the sphere.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信