{"title":"关于双调和波映射的Cauchy问题的全局结果","authors":"Tobias Schmid","doi":"10.5445/IR/1000130150","DOIUrl":null,"url":null,"abstract":"We prove global existence of a derivative bi-harmonic wave equation with a non-generic quadratic nonlinearity and small initial data in the scaling critical space $$\\dot{B}^{2,1}_{\\frac{d}{2}}(\\mathbb{R}^d) \\times \\dot{B}^{2,1}_{\\frac{d}{2}-2}(\\mathbb{R}^d)$$ for $ d \\geq 3 $. Since the solution persists higher regularity of the initial data, we obtain a small data global regularity result for the biharmonic wave maps equation for a certain class of target manifolds including the sphere.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Global results for a Cauchy problem related to biharmonic wave maps\",\"authors\":\"Tobias Schmid\",\"doi\":\"10.5445/IR/1000130150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove global existence of a derivative bi-harmonic wave equation with a non-generic quadratic nonlinearity and small initial data in the scaling critical space $$\\\\dot{B}^{2,1}_{\\\\frac{d}{2}}(\\\\mathbb{R}^d) \\\\times \\\\dot{B}^{2,1}_{\\\\frac{d}{2}-2}(\\\\mathbb{R}^d)$$ for $ d \\\\geq 3 $. Since the solution persists higher regularity of the initial data, we obtain a small data global regularity result for the biharmonic wave maps equation for a certain class of target manifolds including the sphere.\",\"PeriodicalId\":8445,\"journal\":{\"name\":\"arXiv: Analysis of PDEs\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5445/IR/1000130150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5445/IR/1000130150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
我们证明了$ d \geq 3 $在标度临界空间$$\dot{B}^{2,1}_{\frac{d}{2}}(\mathbb{R}^d) \times \dot{B}^{2,1}_{\frac{d}{2}-2}(\mathbb{R}^d)$$上具有非一般二次非线性和小初始数据的导数双谐波方程的整体存在性。由于解具有较高的初始数据正则性,我们得到了一类目标流形(包括球面)双调和波映射方程的小数据全局正则性结果。
Global results for a Cauchy problem related to biharmonic wave maps
We prove global existence of a derivative bi-harmonic wave equation with a non-generic quadratic nonlinearity and small initial data in the scaling critical space $$\dot{B}^{2,1}_{\frac{d}{2}}(\mathbb{R}^d) \times \dot{B}^{2,1}_{\frac{d}{2}-2}(\mathbb{R}^d)$$ for $ d \geq 3 $. Since the solution persists higher regularity of the initial data, we obtain a small data global regularity result for the biharmonic wave maps equation for a certain class of target manifolds including the sphere.