{"title":"在小于一个指数的欧拉积上","authors":"G. Román","doi":"10.2478/ausm-2020-0013","DOIUrl":null,"url":null,"abstract":"Abstract Investigation has been made regarding the properties of the ℿp≤n (1 ± 1/ps) products over the prime numbers, where we fix the s ∈ ℝ exponent, and let the n ≥ 2 natural bound grow toward positive infinity. The nature of these products for the s ≥ 1 case is known. We get approximations for the case when s ∈ [1/2, 1), furthermore different observations for the case when s<1/2.","PeriodicalId":43054,"journal":{"name":"Acta Universitatis Sapientiae-Mathematica","volume":"21 1","pages":"193 - 211"},"PeriodicalIF":0.6000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Euler products with smaller than one exponents\",\"authors\":\"G. Román\",\"doi\":\"10.2478/ausm-2020-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Investigation has been made regarding the properties of the ℿp≤n (1 ± 1/ps) products over the prime numbers, where we fix the s ∈ ℝ exponent, and let the n ≥ 2 natural bound grow toward positive infinity. The nature of these products for the s ≥ 1 case is known. We get approximations for the case when s ∈ [1/2, 1), furthermore different observations for the case when s<1/2.\",\"PeriodicalId\":43054,\"journal\":{\"name\":\"Acta Universitatis Sapientiae-Mathematica\",\"volume\":\"21 1\",\"pages\":\"193 - 211\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Sapientiae-Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausm-2020-0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae-Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2020-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract Investigation has been made regarding the properties of the ℿp≤n (1 ± 1/ps) products over the prime numbers, where we fix the s ∈ ℝ exponent, and let the n ≥ 2 natural bound grow toward positive infinity. The nature of these products for the s ≥ 1 case is known. We get approximations for the case when s ∈ [1/2, 1), furthermore different observations for the case when s<1/2.