曲面上反常扩散的广义有限差分法

Zhuochao Tang, Zhuojia Fu
{"title":"曲面上反常扩散的广义有限差分法","authors":"Zhuochao Tang, Zhuojia Fu","doi":"10.2495/CMEM-V9-N1-63-73","DOIUrl":null,"url":null,"abstract":"In this study, a localized collocation method called generalized finite difference method (GFDM) is developed to solve the anomalous diffusion problems on surfaces. The expressions of the surface Laplace operator, surface gradient operator and surface divergence operator in tangent space are given explicitly, which is different from the definition of differential operators in the Euclidean space. Based on the moving least square theorem and Taylor series, GFDM shares similar properties with standard FDM and avoids mesh dependence, enabling numerical approximations of the surface operators on complex 3D surfaces. Simultaneously, a standard finite difference scheme is adopted to discretize the time fractional derivatives. By using GFDM, we succeed in solving both constantand variableorder time fractional diffusion models on surfaces. Numerical examples show that the present meshless scheme has good accuracy and efficiency for various fractional diffusion models.","PeriodicalId":22520,"journal":{"name":"THE INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS AND EXPERIMENTAL MEASUREMENTS","volume":"66 1","pages":"63-73"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generalized finite difference method for anomalous diffusion on surfaces\",\"authors\":\"Zhuochao Tang, Zhuojia Fu\",\"doi\":\"10.2495/CMEM-V9-N1-63-73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a localized collocation method called generalized finite difference method (GFDM) is developed to solve the anomalous diffusion problems on surfaces. The expressions of the surface Laplace operator, surface gradient operator and surface divergence operator in tangent space are given explicitly, which is different from the definition of differential operators in the Euclidean space. Based on the moving least square theorem and Taylor series, GFDM shares similar properties with standard FDM and avoids mesh dependence, enabling numerical approximations of the surface operators on complex 3D surfaces. Simultaneously, a standard finite difference scheme is adopted to discretize the time fractional derivatives. By using GFDM, we succeed in solving both constantand variableorder time fractional diffusion models on surfaces. Numerical examples show that the present meshless scheme has good accuracy and efficiency for various fractional diffusion models.\",\"PeriodicalId\":22520,\"journal\":{\"name\":\"THE INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS AND EXPERIMENTAL MEASUREMENTS\",\"volume\":\"66 1\",\"pages\":\"63-73\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"THE INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS AND EXPERIMENTAL MEASUREMENTS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2495/CMEM-V9-N1-63-73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS AND EXPERIMENTAL MEASUREMENTS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2495/CMEM-V9-N1-63-73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种求解曲面上异常扩散问题的局部配置方法——广义有限差分法(GFDM)。明确地给出了表面拉普拉斯算子、表面梯度算子和表面散度算子在切空间中的表达式,这与欧几里德空间中微分算子的定义不同。基于移动最小二乘定理和泰勒级数,GFDM与标准FDM具有相似的特性,并且避免了网格依赖,能够在复杂的3D曲面上实现曲面算子的数值逼近。同时,采用标准有限差分格式对时间分数阶导数进行离散化。利用GFDM,我们成功地求解了曲面上的常变阶时间分数扩散模型。数值算例表明,该无网格格式对各种分数阶扩散模型具有良好的精度和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized finite difference method for anomalous diffusion on surfaces
In this study, a localized collocation method called generalized finite difference method (GFDM) is developed to solve the anomalous diffusion problems on surfaces. The expressions of the surface Laplace operator, surface gradient operator and surface divergence operator in tangent space are given explicitly, which is different from the definition of differential operators in the Euclidean space. Based on the moving least square theorem and Taylor series, GFDM shares similar properties with standard FDM and avoids mesh dependence, enabling numerical approximations of the surface operators on complex 3D surfaces. Simultaneously, a standard finite difference scheme is adopted to discretize the time fractional derivatives. By using GFDM, we succeed in solving both constantand variableorder time fractional diffusion models on surfaces. Numerical examples show that the present meshless scheme has good accuracy and efficiency for various fractional diffusion models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信