Cian-Song Huang, Qiaoxin Li, D. Lo, Yuh-Tai Wang, Ming‐Chang Wu
{"title":"果胶酶处理的果胶对脂多糖诱导的RAW 264.7细胞的抗炎活性","authors":"Cian-Song Huang, Qiaoxin Li, D. Lo, Yuh-Tai Wang, Ming‐Chang Wu","doi":"10.33555/jffn.v1i1.14","DOIUrl":null,"url":null,"abstract":"The purpose of this study was to investigate the ability and pathway of the pectic enzyme-treated (PET) pectin to inhibit the inflammation of macrophage RAW 264.7 induced by lipopolysaccharide. Results showed that PET-pectin produced from 1% substrate and 48 h reaction time had the highest antioxidative activity, thus these parameters were used to produce PET-pectin used in this study. PET-pectin showed no cell cytotoxicity to normal macrophage RAW 264.7 and reduce the nitrite secretion from LPS-induced RAW 264.7 by 20%. Finally, the expression of cytokines, including NO synthase (iNOS), nitric oxide (NO), cyclooxygenase-2 (COX-2), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and tumor necrosis factor (TNF-α) were analyzed by western blot. In the western blot method, it was found that iNOS, COX-2, NF-κB, TNF-α and other proteins that activated NO production had a downtrend. It was found that PET-pectin possess promising activity to mitigate the inflammatory response.","PeriodicalId":15797,"journal":{"name":"Journal of Functional Food and Nutraceutical","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Anti-inflammatory activity of pectic enzyme-treated pectin on lipopolysaccharide-induced RAW 264.7 cells\",\"authors\":\"Cian-Song Huang, Qiaoxin Li, D. Lo, Yuh-Tai Wang, Ming‐Chang Wu\",\"doi\":\"10.33555/jffn.v1i1.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this study was to investigate the ability and pathway of the pectic enzyme-treated (PET) pectin to inhibit the inflammation of macrophage RAW 264.7 induced by lipopolysaccharide. Results showed that PET-pectin produced from 1% substrate and 48 h reaction time had the highest antioxidative activity, thus these parameters were used to produce PET-pectin used in this study. PET-pectin showed no cell cytotoxicity to normal macrophage RAW 264.7 and reduce the nitrite secretion from LPS-induced RAW 264.7 by 20%. Finally, the expression of cytokines, including NO synthase (iNOS), nitric oxide (NO), cyclooxygenase-2 (COX-2), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and tumor necrosis factor (TNF-α) were analyzed by western blot. In the western blot method, it was found that iNOS, COX-2, NF-κB, TNF-α and other proteins that activated NO production had a downtrend. It was found that PET-pectin possess promising activity to mitigate the inflammatory response.\",\"PeriodicalId\":15797,\"journal\":{\"name\":\"Journal of Functional Food and Nutraceutical\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Food and Nutraceutical\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33555/jffn.v1i1.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Food and Nutraceutical","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33555/jffn.v1i1.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Anti-inflammatory activity of pectic enzyme-treated pectin on lipopolysaccharide-induced RAW 264.7 cells
The purpose of this study was to investigate the ability and pathway of the pectic enzyme-treated (PET) pectin to inhibit the inflammation of macrophage RAW 264.7 induced by lipopolysaccharide. Results showed that PET-pectin produced from 1% substrate and 48 h reaction time had the highest antioxidative activity, thus these parameters were used to produce PET-pectin used in this study. PET-pectin showed no cell cytotoxicity to normal macrophage RAW 264.7 and reduce the nitrite secretion from LPS-induced RAW 264.7 by 20%. Finally, the expression of cytokines, including NO synthase (iNOS), nitric oxide (NO), cyclooxygenase-2 (COX-2), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and tumor necrosis factor (TNF-α) were analyzed by western blot. In the western blot method, it was found that iNOS, COX-2, NF-κB, TNF-α and other proteins that activated NO production had a downtrend. It was found that PET-pectin possess promising activity to mitigate the inflammatory response.