A. Arefin, Zixia Huang, K. Nahrstedt, Pooja Agarwal
{"title":"4D电视广播:走向3DTI内容的大规模多站点、多视角传播","authors":"A. Arefin, Zixia Huang, K. Nahrstedt, Pooja Agarwal","doi":"10.1109/ICDCS.2012.58","DOIUrl":null,"url":null,"abstract":"3D Tele-immersive systems create real-time multi-stream and multi-view 3D collaborative contents from multiple sites to allow interactive shared activities in virtual environments. Applications of 3DTI include online sports, tele-health, remote learning and collaborative arts. In addition to interactive participants in 3DTI environments, we envision a large number of passive non-interactive viewers that (a) watch the interactive activities in 3DTI shared environments, and (b) select views of the activities at run time. To achieve this vision, we present 4D Tele Cast, a novel multi-stream 3D content distribution framework for non-interactive viewers providing the functionality of multi-view selection. It addresses the following challenges: (1) supporting a large number of concurrent multi-stream viewers as well as multi-views, (2) preserving the unique nature of 3DTI multi-stream and multi-view dependencies at the viewers, and (3) allowing dynamic viewer behavior such as view changes and large-scale simultaneous viewer arrivals or departures. We divide the problem space into two: (1) multi-stream overlay construction problem that aims to minimize the cost of distribution of multi-stream contents, and maximize the number of concurrent viewers with sufficient viewer dynamism in terms of their resources and availabilities, and (2) effective resource utilization problem that aims to preserve the multi-stream dependencies in a view considering the heterogeneous resource constraints at the viewers. We evaluate 4D Tele Cast using extensive simulations with 3DTI activity data and Planet Lab traces.","PeriodicalId":6300,"journal":{"name":"2012 IEEE 32nd International Conference on Distributed Computing Systems","volume":"22 1","pages":"82-91"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"4D TeleCast: Towards Large Scale Multi-site and Multi-view Dissemination of 3DTI Contents\",\"authors\":\"A. Arefin, Zixia Huang, K. Nahrstedt, Pooja Agarwal\",\"doi\":\"10.1109/ICDCS.2012.58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D Tele-immersive systems create real-time multi-stream and multi-view 3D collaborative contents from multiple sites to allow interactive shared activities in virtual environments. Applications of 3DTI include online sports, tele-health, remote learning and collaborative arts. In addition to interactive participants in 3DTI environments, we envision a large number of passive non-interactive viewers that (a) watch the interactive activities in 3DTI shared environments, and (b) select views of the activities at run time. To achieve this vision, we present 4D Tele Cast, a novel multi-stream 3D content distribution framework for non-interactive viewers providing the functionality of multi-view selection. It addresses the following challenges: (1) supporting a large number of concurrent multi-stream viewers as well as multi-views, (2) preserving the unique nature of 3DTI multi-stream and multi-view dependencies at the viewers, and (3) allowing dynamic viewer behavior such as view changes and large-scale simultaneous viewer arrivals or departures. We divide the problem space into two: (1) multi-stream overlay construction problem that aims to minimize the cost of distribution of multi-stream contents, and maximize the number of concurrent viewers with sufficient viewer dynamism in terms of their resources and availabilities, and (2) effective resource utilization problem that aims to preserve the multi-stream dependencies in a view considering the heterogeneous resource constraints at the viewers. We evaluate 4D Tele Cast using extensive simulations with 3DTI activity data and Planet Lab traces.\",\"PeriodicalId\":6300,\"journal\":{\"name\":\"2012 IEEE 32nd International Conference on Distributed Computing Systems\",\"volume\":\"22 1\",\"pages\":\"82-91\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 32nd International Conference on Distributed Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS.2012.58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 32nd International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2012.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
4D TeleCast: Towards Large Scale Multi-site and Multi-view Dissemination of 3DTI Contents
3D Tele-immersive systems create real-time multi-stream and multi-view 3D collaborative contents from multiple sites to allow interactive shared activities in virtual environments. Applications of 3DTI include online sports, tele-health, remote learning and collaborative arts. In addition to interactive participants in 3DTI environments, we envision a large number of passive non-interactive viewers that (a) watch the interactive activities in 3DTI shared environments, and (b) select views of the activities at run time. To achieve this vision, we present 4D Tele Cast, a novel multi-stream 3D content distribution framework for non-interactive viewers providing the functionality of multi-view selection. It addresses the following challenges: (1) supporting a large number of concurrent multi-stream viewers as well as multi-views, (2) preserving the unique nature of 3DTI multi-stream and multi-view dependencies at the viewers, and (3) allowing dynamic viewer behavior such as view changes and large-scale simultaneous viewer arrivals or departures. We divide the problem space into two: (1) multi-stream overlay construction problem that aims to minimize the cost of distribution of multi-stream contents, and maximize the number of concurrent viewers with sufficient viewer dynamism in terms of their resources and availabilities, and (2) effective resource utilization problem that aims to preserve the multi-stream dependencies in a view considering the heterogeneous resource constraints at the viewers. We evaluate 4D Tele Cast using extensive simulations with 3DTI activity data and Planet Lab traces.