一个严格的、可定制的隐私框架

Daniel Kifer, Ashwin Machanavajjhala
{"title":"一个严格的、可定制的隐私框架","authors":"Daniel Kifer, Ashwin Machanavajjhala","doi":"10.1145/2213556.2213571","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a new and general privacy framework called Pufferfish. The Pufferfish framework can be used to create new privacy definitions that are customized to the needs of a given application. The goal of Pufferfish is to allow experts in an application domain, who frequently do not have expertise in privacy, to develop rigorous privacy definitions for their data sharing needs. In addition to this, the Pufferfish framework can also be used to study existing privacy definitions.\n We illustrate the benefits with several applications of this privacy framework: we use it to formalize and prove the statement that differential privacy assumes independence between records, we use it to define and study the notion of composition in a broader context than before, we show how to apply it to protect unbounded continuous attributes and aggregate information, and we show how to use it to rigorously account for prior data releases.","PeriodicalId":92118,"journal":{"name":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","volume":"46 1","pages":"77-88"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"169","resultStr":"{\"title\":\"A rigorous and customizable framework for privacy\",\"authors\":\"Daniel Kifer, Ashwin Machanavajjhala\",\"doi\":\"10.1145/2213556.2213571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a new and general privacy framework called Pufferfish. The Pufferfish framework can be used to create new privacy definitions that are customized to the needs of a given application. The goal of Pufferfish is to allow experts in an application domain, who frequently do not have expertise in privacy, to develop rigorous privacy definitions for their data sharing needs. In addition to this, the Pufferfish framework can also be used to study existing privacy definitions.\\n We illustrate the benefits with several applications of this privacy framework: we use it to formalize and prove the statement that differential privacy assumes independence between records, we use it to define and study the notion of composition in a broader context than before, we show how to apply it to protect unbounded continuous attributes and aggregate information, and we show how to use it to rigorously account for prior data releases.\",\"PeriodicalId\":92118,\"journal\":{\"name\":\"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems\",\"volume\":\"46 1\",\"pages\":\"77-88\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"169\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2213556.2213571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2213556.2213571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 169

摘要

在本文中,我们引入了一种新的通用隐私框架,称为Pufferfish。Pufferfish框架可用于创建新的隐私定义,这些定义可根据给定应用程序的需求进行定制。Pufferfish的目标是允许应用程序领域的专家(他们通常没有隐私方面的专业知识)为他们的数据共享需求开发严格的隐私定义。除此之外,Pufferfish框架还可以用于研究现有的隐私定义。我们说明了这个隐私框架的几个应用的好处:我们用它来形式化和证明差分隐私假设记录之间独立的陈述,我们用它来定义和研究比以前更广泛的上下文中的组合概念,我们展示了如何应用它来保护无界连续属性和聚合信息,我们展示了如何使用它来严格解释先前的数据发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A rigorous and customizable framework for privacy
In this paper we introduce a new and general privacy framework called Pufferfish. The Pufferfish framework can be used to create new privacy definitions that are customized to the needs of a given application. The goal of Pufferfish is to allow experts in an application domain, who frequently do not have expertise in privacy, to develop rigorous privacy definitions for their data sharing needs. In addition to this, the Pufferfish framework can also be used to study existing privacy definitions. We illustrate the benefits with several applications of this privacy framework: we use it to formalize and prove the statement that differential privacy assumes independence between records, we use it to define and study the notion of composition in a broader context than before, we show how to apply it to protect unbounded continuous attributes and aggregate information, and we show how to use it to rigorously account for prior data releases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信