SFLKit:统计故障定位工作台

Marius Smytzek, A. Zeller
{"title":"SFLKit:统计故障定位工作台","authors":"Marius Smytzek, A. Zeller","doi":"10.1145/3540250.3558915","DOIUrl":null,"url":null,"abstract":"Statistical fault localization aims at detecting execution features that correlate with failures, such as whether individual lines are part of the execution. We introduce SFLKit, an out-of-the-box workbench for statistical fault localization. The framework provides straightforward access to the fundamental concepts of statistical fault localization. It supports five predicate types, four coverage-inspired spectra, like lines, and 44 similarity coefficients, e.g., TARANTULA or OCHIAI, for statistical program analysis. SFLKit separates the execution of tests from the analysis of the results and is therefore independent of the used testing framework. It leverages program instrumentation to enable the logging of events and derives the predicates and spectra from these logs. This instrumentation allows for introducing multiple programming languages and the extension of new concepts in statistical fault localization. Currently, SFLKit supports the instrumentation of Python programs. It is highly configurable, requiring only the logging of the required events.","PeriodicalId":68155,"journal":{"name":"软件产业与工程","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SFLKit: a workbench for statistical fault localization\",\"authors\":\"Marius Smytzek, A. Zeller\",\"doi\":\"10.1145/3540250.3558915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Statistical fault localization aims at detecting execution features that correlate with failures, such as whether individual lines are part of the execution. We introduce SFLKit, an out-of-the-box workbench for statistical fault localization. The framework provides straightforward access to the fundamental concepts of statistical fault localization. It supports five predicate types, four coverage-inspired spectra, like lines, and 44 similarity coefficients, e.g., TARANTULA or OCHIAI, for statistical program analysis. SFLKit separates the execution of tests from the analysis of the results and is therefore independent of the used testing framework. It leverages program instrumentation to enable the logging of events and derives the predicates and spectra from these logs. This instrumentation allows for introducing multiple programming languages and the extension of new concepts in statistical fault localization. Currently, SFLKit supports the instrumentation of Python programs. It is highly configurable, requiring only the logging of the required events.\",\"PeriodicalId\":68155,\"journal\":{\"name\":\"软件产业与工程\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"软件产业与工程\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1145/3540250.3558915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"软件产业与工程","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1145/3540250.3558915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

统计故障定位旨在检测与故障相关的执行特征,例如单个行是否属于执行的一部分。我们介绍了SFLKit,一个用于统计故障定位的开箱即用的工作台。该框架提供了对统计故障定位基本概念的直接访问。它支持五种谓词类型,四种覆盖启发光谱,如线,以及44个相似系数,例如TARANTULA或OCHIAI,用于统计程序分析。SFLKit将测试的执行与结果的分析分开,因此独立于所使用的测试框架。它利用程序检测来启用事件日志,并从这些日志中派生谓词和谱。这种工具允许在统计故障定位中引入多种编程语言和扩展新概念。目前,SFLKit支持Python程序的插装。它是高度可配置的,只需要记录所需的事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SFLKit: a workbench for statistical fault localization
Statistical fault localization aims at detecting execution features that correlate with failures, such as whether individual lines are part of the execution. We introduce SFLKit, an out-of-the-box workbench for statistical fault localization. The framework provides straightforward access to the fundamental concepts of statistical fault localization. It supports five predicate types, four coverage-inspired spectra, like lines, and 44 similarity coefficients, e.g., TARANTULA or OCHIAI, for statistical program analysis. SFLKit separates the execution of tests from the analysis of the results and is therefore independent of the used testing framework. It leverages program instrumentation to enable the logging of events and derives the predicates and spectra from these logs. This instrumentation allows for introducing multiple programming languages and the extension of new concepts in statistical fault localization. Currently, SFLKit supports the instrumentation of Python programs. It is highly configurable, requiring only the logging of the required events.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
676
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信