一个异构CPU-GPU实现离散元素模拟与多个gpu

Yuan Tian, Junjie Lai, Lei Yang, Ji Qi, Qingguo Zhou
{"title":"一个异构CPU-GPU实现离散元素模拟与多个gpu","authors":"Yuan Tian, Junjie Lai, Lei Yang, Ji Qi, Qingguo Zhou","doi":"10.1109/ICAWST.2013.6765500","DOIUrl":null,"url":null,"abstract":"To calculate the large number of particles in discrete elements simulation, a heterogeneous CPU-GPU implementation with multiple GPUs is developed. The implementation is achieved by combining two different parallel programming languages so that it can be assigned to a CPU-GPU cluster. The communication between nodes uses Massage Passing Interface (MPI) implementation for dynamic domain decomposition, particles re-mapping and data copying of overlapping areas. Other works are assigned to GPUs to obtain a high computational speed. The results of strong and weak scalability tests are analyzed for different number of GPUs. Last, the LAMMPS is used as CPU platform to compare with multi-GPU application for reflecting the superiority of using heterogeneous implementation.","PeriodicalId":68697,"journal":{"name":"炎黄地理","volume":"71 1","pages":"547-552"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A heterogeneous CPU-GPU implementation for discrete elements simulation with multiple GPUs\",\"authors\":\"Yuan Tian, Junjie Lai, Lei Yang, Ji Qi, Qingguo Zhou\",\"doi\":\"10.1109/ICAWST.2013.6765500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To calculate the large number of particles in discrete elements simulation, a heterogeneous CPU-GPU implementation with multiple GPUs is developed. The implementation is achieved by combining two different parallel programming languages so that it can be assigned to a CPU-GPU cluster. The communication between nodes uses Massage Passing Interface (MPI) implementation for dynamic domain decomposition, particles re-mapping and data copying of overlapping areas. Other works are assigned to GPUs to obtain a high computational speed. The results of strong and weak scalability tests are analyzed for different number of GPUs. Last, the LAMMPS is used as CPU platform to compare with multi-GPU application for reflecting the superiority of using heterogeneous implementation.\",\"PeriodicalId\":68697,\"journal\":{\"name\":\"炎黄地理\",\"volume\":\"71 1\",\"pages\":\"547-552\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"炎黄地理\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAWST.2013.6765500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"炎黄地理","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/ICAWST.2013.6765500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

为了在离散元模拟中计算大量粒子,开发了一种多gpu的异构CPU-GPU实现。该实现是通过结合两种不同的并行编程语言来实现的,因此可以将其分配给CPU-GPU集群。节点间通信采用MPI (Massage Passing Interface)实现动态域分解、粒子重映射和重叠区域数据复制。其他工作分配给gpu以获得较高的计算速度。分析了不同gpu数量下的强扩展性和弱扩展性测试结果。最后,将LAMMPS作为CPU平台与多gpu应用进行比较,以体现采用异构实现的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A heterogeneous CPU-GPU implementation for discrete elements simulation with multiple GPUs
To calculate the large number of particles in discrete elements simulation, a heterogeneous CPU-GPU implementation with multiple GPUs is developed. The implementation is achieved by combining two different parallel programming languages so that it can be assigned to a CPU-GPU cluster. The communication between nodes uses Massage Passing Interface (MPI) implementation for dynamic domain decomposition, particles re-mapping and data copying of overlapping areas. Other works are assigned to GPUs to obtain a high computational speed. The results of strong and weak scalability tests are analyzed for different number of GPUs. Last, the LAMMPS is used as CPU platform to compare with multi-GPU application for reflecting the superiority of using heterogeneous implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
784
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信