{"title":"不同研磨顺序对DC06与等厚热冲压B1500HS钢板异种电阻点焊接头力学性能及熔核形成过程的影响","authors":"Mao Xin, Zhi Cheng, Q. Zhu, Wurong Wang, Xi-cheng Wei, Yangyang Zhao","doi":"10.1051/METAL/2020094","DOIUrl":null,"url":null,"abstract":"In this study, the mechanical properties of two welded joints under different lapping orders (B1500HS-1.4 mm/B1500HS-1.6 mm/DC06, denoted as type I; B1500HS-1.4 mm/DC06/B1500HS-1.6 mm, denoted type II) were compared. The nugget formation mechanism was analysed by a coupled electrical-thermal finite element model (FEM). It is found that different lapping orders significantly affect the mechanical properties of three-sheet RSW joints. All RSW joints tend to fail in the pull-out or tearing failure mode. The peak load of the two interfaces of type II RSW joint is more balanced, and the failure load of which is much higher than that of the type I RSW joint; The warpage was observed at type I welded joint. Considered the load-carrying capacity, type II was excellent. The simulation results indicate that the diameter of the weld nugget at the upper interface of the type I RSW joint was larger than that on the other interfaces, which agree well with the experimental results. The nugget formation mechanism of dissimilar high strength steel three-sheet RSW joint was obtained that forming the nugget firstly from two interfaces and final formed nuggets were asymmetric.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"11 1","pages":"112"},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of different lapping orders on mechanical performance and nugget forming process for three-sheet dissimilar resistance spot welding joints between DC06 and unequal-thickness hot-stamped B1500HS steel sheets\",\"authors\":\"Mao Xin, Zhi Cheng, Q. Zhu, Wurong Wang, Xi-cheng Wei, Yangyang Zhao\",\"doi\":\"10.1051/METAL/2020094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the mechanical properties of two welded joints under different lapping orders (B1500HS-1.4 mm/B1500HS-1.6 mm/DC06, denoted as type I; B1500HS-1.4 mm/DC06/B1500HS-1.6 mm, denoted type II) were compared. The nugget formation mechanism was analysed by a coupled electrical-thermal finite element model (FEM). It is found that different lapping orders significantly affect the mechanical properties of three-sheet RSW joints. All RSW joints tend to fail in the pull-out or tearing failure mode. The peak load of the two interfaces of type II RSW joint is more balanced, and the failure load of which is much higher than that of the type I RSW joint; The warpage was observed at type I welded joint. Considered the load-carrying capacity, type II was excellent. The simulation results indicate that the diameter of the weld nugget at the upper interface of the type I RSW joint was larger than that on the other interfaces, which agree well with the experimental results. The nugget formation mechanism of dissimilar high strength steel three-sheet RSW joint was obtained that forming the nugget firstly from two interfaces and final formed nuggets were asymmetric.\",\"PeriodicalId\":18527,\"journal\":{\"name\":\"Metallurgical Research & Technology\",\"volume\":\"11 1\",\"pages\":\"112\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical Research & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1051/METAL/2020094\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical Research & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1051/METAL/2020094","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Effect of different lapping orders on mechanical performance and nugget forming process for three-sheet dissimilar resistance spot welding joints between DC06 and unequal-thickness hot-stamped B1500HS steel sheets
In this study, the mechanical properties of two welded joints under different lapping orders (B1500HS-1.4 mm/B1500HS-1.6 mm/DC06, denoted as type I; B1500HS-1.4 mm/DC06/B1500HS-1.6 mm, denoted type II) were compared. The nugget formation mechanism was analysed by a coupled electrical-thermal finite element model (FEM). It is found that different lapping orders significantly affect the mechanical properties of three-sheet RSW joints. All RSW joints tend to fail in the pull-out or tearing failure mode. The peak load of the two interfaces of type II RSW joint is more balanced, and the failure load of which is much higher than that of the type I RSW joint; The warpage was observed at type I welded joint. Considered the load-carrying capacity, type II was excellent. The simulation results indicate that the diameter of the weld nugget at the upper interface of the type I RSW joint was larger than that on the other interfaces, which agree well with the experimental results. The nugget formation mechanism of dissimilar high strength steel three-sheet RSW joint was obtained that forming the nugget firstly from two interfaces and final formed nuggets were asymmetric.
期刊介绍:
Metallurgical Research and Technology (MRT) is a peer-reviewed bi-monthly journal publishing original high-quality research papers in areas ranging from process metallurgy to metal product properties and applications of ferrous and non-ferrous metals and alloys, including light-metals. It covers also the materials involved in the metal processing as ores, refractories and slags.
The journal is listed in the citation index Web of Science and has an Impact Factor.
It is highly concerned by the technological innovation as a support of the metallurgical industry at a time when it has to tackle severe challenges like energy, raw materials, sustainability, environment... Strengthening and enhancing the dialogue between science and industry is at the heart of the scope of MRT. This is why it welcomes manuscripts focusing on industrial practice, as well as basic metallurgical knowledge or review articles.