{"title":"激光传播模型的随机量化","authors":"S. Sritharan, S. Mudaliar","doi":"10.1142/s0219025723500108","DOIUrl":null,"url":null,"abstract":"This paper identifies certain interesting mathematical problems of stochastic quantization type in the modeling of Laser propagation through turbulent media. In some of the typical physical contexts the problem reduces to stochastic Schrodinger equation with space-time white noise of Gaussian, Poisson and Levy type. We identify their mathematical resolution via stochastic quantization. Nonlinear phenomena such as Kerr effect can be modeled by stochastic nonlinear Schrodinger equation in the focusing case with space-time white noise. A treatment of stochastic transport equation, the Korteweg-de Vries Equation as well as a number of other nonlinear wave equations with space-time white noise is also given. Main technique is the S-transform (we will actually use closely related Hermite transform) which converts the stochastic partial differential equation with space time white noise to a deterministic partial differential equation defined on the Hida-Kondratiev white noise distribution space. We then utlize the inverse S-transform/Hermite transform known as the characterization theorem combined with the infinite dimensional implicit function theorem for analytic maps to establish local existence and uniqueness theorems for pathwise solutions of these class of problems. The particular focus of this paper on singular white noise distributions is motivated by practical situations where the refractive index fluctuations in propagation medium in space and time are intense due to turbulence, ionospheric plasma turbulence, marine-layer fluctuations, etc. Since a large class of partial differential equations that arise in nonlinear wave propagation have polynomial type nonlinearities, white noise distribution theory is an effective tool in studying these problems subject to different types of white noises.","PeriodicalId":50366,"journal":{"name":"Infinite Dimensional Analysis Quantum Probability and Related Topics","volume":"22 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic Quantization of Laser Propagation Models\",\"authors\":\"S. Sritharan, S. Mudaliar\",\"doi\":\"10.1142/s0219025723500108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper identifies certain interesting mathematical problems of stochastic quantization type in the modeling of Laser propagation through turbulent media. In some of the typical physical contexts the problem reduces to stochastic Schrodinger equation with space-time white noise of Gaussian, Poisson and Levy type. We identify their mathematical resolution via stochastic quantization. Nonlinear phenomena such as Kerr effect can be modeled by stochastic nonlinear Schrodinger equation in the focusing case with space-time white noise. A treatment of stochastic transport equation, the Korteweg-de Vries Equation as well as a number of other nonlinear wave equations with space-time white noise is also given. Main technique is the S-transform (we will actually use closely related Hermite transform) which converts the stochastic partial differential equation with space time white noise to a deterministic partial differential equation defined on the Hida-Kondratiev white noise distribution space. We then utlize the inverse S-transform/Hermite transform known as the characterization theorem combined with the infinite dimensional implicit function theorem for analytic maps to establish local existence and uniqueness theorems for pathwise solutions of these class of problems. The particular focus of this paper on singular white noise distributions is motivated by practical situations where the refractive index fluctuations in propagation medium in space and time are intense due to turbulence, ionospheric plasma turbulence, marine-layer fluctuations, etc. Since a large class of partial differential equations that arise in nonlinear wave propagation have polynomial type nonlinearities, white noise distribution theory is an effective tool in studying these problems subject to different types of white noises.\",\"PeriodicalId\":50366,\"journal\":{\"name\":\"Infinite Dimensional Analysis Quantum Probability and Related Topics\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infinite Dimensional Analysis Quantum Probability and Related Topics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219025723500108\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infinite Dimensional Analysis Quantum Probability and Related Topics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219025723500108","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Stochastic Quantization of Laser Propagation Models
This paper identifies certain interesting mathematical problems of stochastic quantization type in the modeling of Laser propagation through turbulent media. In some of the typical physical contexts the problem reduces to stochastic Schrodinger equation with space-time white noise of Gaussian, Poisson and Levy type. We identify their mathematical resolution via stochastic quantization. Nonlinear phenomena such as Kerr effect can be modeled by stochastic nonlinear Schrodinger equation in the focusing case with space-time white noise. A treatment of stochastic transport equation, the Korteweg-de Vries Equation as well as a number of other nonlinear wave equations with space-time white noise is also given. Main technique is the S-transform (we will actually use closely related Hermite transform) which converts the stochastic partial differential equation with space time white noise to a deterministic partial differential equation defined on the Hida-Kondratiev white noise distribution space. We then utlize the inverse S-transform/Hermite transform known as the characterization theorem combined with the infinite dimensional implicit function theorem for analytic maps to establish local existence and uniqueness theorems for pathwise solutions of these class of problems. The particular focus of this paper on singular white noise distributions is motivated by practical situations where the refractive index fluctuations in propagation medium in space and time are intense due to turbulence, ionospheric plasma turbulence, marine-layer fluctuations, etc. Since a large class of partial differential equations that arise in nonlinear wave propagation have polynomial type nonlinearities, white noise distribution theory is an effective tool in studying these problems subject to different types of white noises.
期刊介绍:
In the past few years the fields of infinite dimensional analysis and quantum probability have undergone increasingly significant developments and have found many new applications, in particular, to classical probability and to different branches of physics. The number of first-class papers in these fields has grown at the same rate. This is currently the only journal which is devoted to these fields.
It constitutes an essential and central point of reference for the large number of mathematicians, mathematical physicists and other scientists who have been drawn into these areas. Both fields have strong interdisciplinary nature, with deep connection to, for example, classical probability, stochastic analysis, mathematical physics, operator algebras, irreversibility, ergodic theory and dynamical systems, quantum groups, classical and quantum stochastic geometry, quantum chaos, Dirichlet forms, harmonic analysis, quantum measurement, quantum computer, etc. The journal reflects this interdisciplinarity and welcomes high quality papers in all such related fields, particularly those which reveal connections with the main fields of this journal.