无人脸检测的无约束人脸对齐

Xiaohu Shao, Junliang Xing, Jiang-Jing Lv, C. Xiao, Pengcheng Liu, Youji Feng, Cheng Cheng
{"title":"无人脸检测的无约束人脸对齐","authors":"Xiaohu Shao, Junliang Xing, Jiang-Jing Lv, C. Xiao, Pengcheng Liu, Youji Feng, Cheng Cheng","doi":"10.1109/CVPRW.2017.258","DOIUrl":null,"url":null,"abstract":"This paper introduces our submission to the 2nd Facial Landmark Localisation Competition. We present a deep architecture to directly detect facial landmarks without using face detection as an initialization. The architecture consists of two stages, a Basic Landmark Prediction Stage and a Whole Landmark Regression Stage. At the former stage, given an input image, the basic landmarks of all faces are detected by a sub-network of landmark heatmap and affinity field prediction. At the latter stage, the coarse canonical face and the pose can be generated by a Pose Splitting Layer based on the visible basic landmarks. According to its pose, each canonical state is distributed to the corresponding branch of the shape regression sub-networks for the whole landmark detection. Experimental results show that our method obtains promising results on the 300-W dataset, and achieves superior performances over the baselines of the semi-frontal and the profile categories in this competition.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"1 1","pages":"2069-2077"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Unconstrained Face Alignment Without Face Detection\",\"authors\":\"Xiaohu Shao, Junliang Xing, Jiang-Jing Lv, C. Xiao, Pengcheng Liu, Youji Feng, Cheng Cheng\",\"doi\":\"10.1109/CVPRW.2017.258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces our submission to the 2nd Facial Landmark Localisation Competition. We present a deep architecture to directly detect facial landmarks without using face detection as an initialization. The architecture consists of two stages, a Basic Landmark Prediction Stage and a Whole Landmark Regression Stage. At the former stage, given an input image, the basic landmarks of all faces are detected by a sub-network of landmark heatmap and affinity field prediction. At the latter stage, the coarse canonical face and the pose can be generated by a Pose Splitting Layer based on the visible basic landmarks. According to its pose, each canonical state is distributed to the corresponding branch of the shape regression sub-networks for the whole landmark detection. Experimental results show that our method obtains promising results on the 300-W dataset, and achieves superior performances over the baselines of the semi-frontal and the profile categories in this competition.\",\"PeriodicalId\":6668,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"1 1\",\"pages\":\"2069-2077\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2017.258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文介绍了我们提交给第二届面部地标本地化竞赛的作品。我们提出了一种不使用人脸检测作为初始化而直接检测人脸标志的深度架构。该体系结构包括两个阶段:基本里程碑预测阶段和整个里程碑回归阶段。在前一阶段,给定输入图像,通过地标热图和亲和场预测的子网络检测所有人脸的基本地标;在后一阶段,基于可见的基本地标,通过姿态分割层生成粗规范面和姿态。根据其位姿,将每个规范状态分配到形状回归子网络的相应分支中,用于整个地标检测。实验结果表明,我们的方法在300-W数据集上取得了令人满意的结果,并且在本次比赛中取得了优于半正面和轮廓类别基线的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unconstrained Face Alignment Without Face Detection
This paper introduces our submission to the 2nd Facial Landmark Localisation Competition. We present a deep architecture to directly detect facial landmarks without using face detection as an initialization. The architecture consists of two stages, a Basic Landmark Prediction Stage and a Whole Landmark Regression Stage. At the former stage, given an input image, the basic landmarks of all faces are detected by a sub-network of landmark heatmap and affinity field prediction. At the latter stage, the coarse canonical face and the pose can be generated by a Pose Splitting Layer based on the visible basic landmarks. According to its pose, each canonical state is distributed to the corresponding branch of the shape regression sub-networks for the whole landmark detection. Experimental results show that our method obtains promising results on the 300-W dataset, and achieves superior performances over the baselines of the semi-frontal and the profile categories in this competition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信