任意特征为零的域上有限自同构群的算子的合理性

A. Trepalin
{"title":"任意特征为零的域上有限自同构群的算子的合理性","authors":"A. Trepalin","doi":"10.2478/s11533-013-0340-7","DOIUrl":null,"url":null,"abstract":"AbstractLet $$\\Bbbk$$ be a field of characteristic zero and G be a finite group of automorphisms of projective plane over $$\\Bbbk$$. Castelnuovo’s criterion implies that the quotient of projective plane by G is rational if the field $$\\Bbbk$$ is algebraically closed. In this paper we prove that $${{\\mathbb{P}_\\Bbbk ^2 } \\mathord{\\left/\n {\\vphantom {{\\mathbb{P}_\\Bbbk ^2 } G}} \\right.\n \\kern-\\nulldelimiterspace} G}$$ is rational for an arbitrary field $$\\Bbbk$$ of characteristic zero.","PeriodicalId":50988,"journal":{"name":"Central European Journal of Mathematics","volume":"44 1","pages":"229-239"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Rationality of the quotient of ℙ2 by finite group of automorphisms over arbitrary field of characteristic zero\",\"authors\":\"A. Trepalin\",\"doi\":\"10.2478/s11533-013-0340-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractLet $$\\\\Bbbk$$ be a field of characteristic zero and G be a finite group of automorphisms of projective plane over $$\\\\Bbbk$$. Castelnuovo’s criterion implies that the quotient of projective plane by G is rational if the field $$\\\\Bbbk$$ is algebraically closed. In this paper we prove that $${{\\\\mathbb{P}_\\\\Bbbk ^2 } \\\\mathord{\\\\left/\\n {\\\\vphantom {{\\\\mathbb{P}_\\\\Bbbk ^2 } G}} \\\\right.\\n \\\\kern-\\\\nulldelimiterspace} G}$$ is rational for an arbitrary field $$\\\\Bbbk$$ of characteristic zero.\",\"PeriodicalId\":50988,\"journal\":{\"name\":\"Central European Journal of Mathematics\",\"volume\":\"44 1\",\"pages\":\"229-239\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11533-013-0340-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11533-013-0340-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

摘要设$$\Bbbk$$为特征为零的域,G为$$\Bbbk$$上投影平面上的自同构的有限群。Castelnuovo准则表明,如果场$$\Bbbk$$是代数闭的,则投影平面与G的商是有理的。本文证明了对于特征为零的任意域$$\Bbbk$$$${{\mathbb{P}_\Bbbk ^2 } \mathord{\left/ {\vphantom {{\mathbb{P}_\Bbbk ^2 } G}} \right. \kern-\nulldelimiterspace} G}$$是有理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rationality of the quotient of ℙ2 by finite group of automorphisms over arbitrary field of characteristic zero
AbstractLet $$\Bbbk$$ be a field of characteristic zero and G be a finite group of automorphisms of projective plane over $$\Bbbk$$. Castelnuovo’s criterion implies that the quotient of projective plane by G is rational if the field $$\Bbbk$$ is algebraically closed. In this paper we prove that $${{\mathbb{P}_\Bbbk ^2 } \mathord{\left/ {\vphantom {{\mathbb{P}_\Bbbk ^2 } G}} \right. \kern-\nulldelimiterspace} G}$$ is rational for an arbitrary field $$\Bbbk$$ of characteristic zero.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信