基于UFIR滤波的心电信号状态空间去噪特征提取

C. Lastre-Dominguez, Y. Shmaliy, O. Ibarra-Manzano, Miguel Vazquez-Olguin, J. Muñoz-Minjares
{"title":"基于UFIR滤波的心电信号状态空间去噪特征提取","authors":"C. Lastre-Dominguez, Y. Shmaliy, O. Ibarra-Manzano, Miguel Vazquez-Olguin, J. Muñoz-Minjares","doi":"10.1109/ICEEE.2018.8533909","DOIUrl":null,"url":null,"abstract":"Features extraction from the electrocardiography (ECG) signal measurements are required for medical needs to detect heart abnormalities and different kinds of diseases. One of the standard techniques providing denoising and extracting features of ECG signals employs one-step prediction. We show that better accuracy can be obtained using UFIR filtering and smoothing. We develop the UFIR-based fast algorithms in discrete-time state-space with adaptive optimal averaging horizon, which is required to minimize the mean square error. In this paper, we exploit ECG measurements and artificial data related to normal heartbeats. Higher accuracy of the developed state-space UFIR smoothing algorithm against the traditional prediction-based one is demonstrated experimentally and by simulation.","PeriodicalId":6924,"journal":{"name":"2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"21 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"ECG Signals Denoising in State Space using UFIR Filtering for Features Extraction\",\"authors\":\"C. Lastre-Dominguez, Y. Shmaliy, O. Ibarra-Manzano, Miguel Vazquez-Olguin, J. Muñoz-Minjares\",\"doi\":\"10.1109/ICEEE.2018.8533909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Features extraction from the electrocardiography (ECG) signal measurements are required for medical needs to detect heart abnormalities and different kinds of diseases. One of the standard techniques providing denoising and extracting features of ECG signals employs one-step prediction. We show that better accuracy can be obtained using UFIR filtering and smoothing. We develop the UFIR-based fast algorithms in discrete-time state-space with adaptive optimal averaging horizon, which is required to minimize the mean square error. In this paper, we exploit ECG measurements and artificial data related to normal heartbeats. Higher accuracy of the developed state-space UFIR smoothing algorithm against the traditional prediction-based one is demonstrated experimentally and by simulation.\",\"PeriodicalId\":6924,\"journal\":{\"name\":\"2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"volume\":\"21 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEE.2018.8533909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2018.8533909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

从心电图(ECG)信号测量中提取特征是医学检测心脏异常和各种疾病所必需的。对心电信号进行去噪和特征提取的标准技术之一是一步预测。结果表明,使用UFIR滤波和平滑可以获得更好的精度。我们开发了一种基于uir的离散时间状态空间快速算法,该算法具有自适应最优平均水平,要求最小均方误差。在本文中,我们利用ECG测量和与正常心跳相关的人工数据。实验和仿真结果表明,所提出的状态空间UFIR平滑算法比传统的基于预测的UFIR平滑算法具有更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ECG Signals Denoising in State Space using UFIR Filtering for Features Extraction
Features extraction from the electrocardiography (ECG) signal measurements are required for medical needs to detect heart abnormalities and different kinds of diseases. One of the standard techniques providing denoising and extracting features of ECG signals employs one-step prediction. We show that better accuracy can be obtained using UFIR filtering and smoothing. We develop the UFIR-based fast algorithms in discrete-time state-space with adaptive optimal averaging horizon, which is required to minimize the mean square error. In this paper, we exploit ECG measurements and artificial data related to normal heartbeats. Higher accuracy of the developed state-space UFIR smoothing algorithm against the traditional prediction-based one is demonstrated experimentally and by simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信