基于光流特征集的人体活动识别

S. S. Kumar, M. John
{"title":"基于光流特征集的人体活动识别","authors":"S. S. Kumar, M. John","doi":"10.1109/CCST.2016.7815694","DOIUrl":null,"url":null,"abstract":"An optical flow based approach for recognizing human actions and human-human interactions in video sequences has been addressed in this paper. We propose a local descriptor built by optical flow vectors along the edges of the action performer(s). By using the proposed feature descriptor with multi-class SVM classifier, recognition rates as high as 95.69% and 94.62% have been achieved for Weizmann action dataset and KTH action dataset respectively. The recognition rate achieved is 92.7% for UT interaction Set_1, 90.21% for UT interaction Set_2. The results demonstrate that the method is simple and efficient.","PeriodicalId":6510,"journal":{"name":"2016 IEEE International Carnahan Conference on Security Technology (ICCST)","volume":"1 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Human activity recognition using optical flow based feature set\",\"authors\":\"S. S. Kumar, M. John\",\"doi\":\"10.1109/CCST.2016.7815694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An optical flow based approach for recognizing human actions and human-human interactions in video sequences has been addressed in this paper. We propose a local descriptor built by optical flow vectors along the edges of the action performer(s). By using the proposed feature descriptor with multi-class SVM classifier, recognition rates as high as 95.69% and 94.62% have been achieved for Weizmann action dataset and KTH action dataset respectively. The recognition rate achieved is 92.7% for UT interaction Set_1, 90.21% for UT interaction Set_2. The results demonstrate that the method is simple and efficient.\",\"PeriodicalId\":6510,\"journal\":{\"name\":\"2016 IEEE International Carnahan Conference on Security Technology (ICCST)\",\"volume\":\"1 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Carnahan Conference on Security Technology (ICCST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCST.2016.7815694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Carnahan Conference on Security Technology (ICCST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCST.2016.7815694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

本文研究了一种基于光流的方法来识别视频序列中的人类行为和人与人之间的互动。我们提出了一个由沿动作表演者边缘的光流矢量构建的局部描述子。将所提出的特征描述符与多类SVM分类器结合使用,对Weizmann动作数据集和KTH动作数据集的识别率分别高达95.69%和94.62%。UT相互作用Set_1的识别率为92.7%,UT相互作用Set_2的识别率为90.21%。结果表明,该方法简单、有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human activity recognition using optical flow based feature set
An optical flow based approach for recognizing human actions and human-human interactions in video sequences has been addressed in this paper. We propose a local descriptor built by optical flow vectors along the edges of the action performer(s). By using the proposed feature descriptor with multi-class SVM classifier, recognition rates as high as 95.69% and 94.62% have been achieved for Weizmann action dataset and KTH action dataset respectively. The recognition rate achieved is 92.7% for UT interaction Set_1, 90.21% for UT interaction Set_2. The results demonstrate that the method is simple and efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信